設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=x2,若對(duì)任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,則實(shí)數(shù)t的取值范圍是
A.[√2,+∞) B.[2,+∞)
C.(0,2]D.[-√2,-1]∪[√2,0]
A
據(jù)題意得函數(shù)在x≥0時(shí)是增函數(shù),又f(x)是定義在R上的奇函數(shù),所以f(x)是定義在R上的增函數(shù),f(x)=x2  2f(x)=,所以f(x+t)≥2f(x)即是f(x+t)≥,
f(x)是在R上的增函數(shù),所以,又x∈[t,t+2],所以
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)是定義在上的奇函數(shù),且
(1)求實(shí)數(shù)a,b,并確定函數(shù)的解析式;
(2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)寫出的單調(diào)減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),在上是增函數(shù),則實(shí)數(shù)a的取值范圍是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中
在x=1處取得極值,求a的值;
的單調(diào)區(qū)間;
(Ⅲ)若的最小值為1,求a的取值范圍.   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)的導(dǎo)數(shù)為,若函數(shù)的圖象關(guān)于直線對(duì)稱,且.
(Ⅰ)求實(shí)數(shù),的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)時(shí)有   (    )
A.極小值B.極大值
C.既有極大值又有極小值D.極值不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)上的最大值為             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),則( )
A.2B.1C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是R上的單調(diào)增函數(shù),則的取值范圍是   
A.    B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案