【題目】若x=﹣2是函數(shù)f(x)=(x2+ax﹣1)ex﹣1的極值點,則f(x)的極小值為( )
A.﹣1
B.﹣2e﹣3
C.5e﹣3
D.1
【答案】A
【解析】解:函數(shù)f(x)=(x2+ax﹣1)ex﹣1 ,
可得f′(x)=(2x+a)ex﹣1+(x2+ax﹣1)ex﹣1 ,
x=﹣2是函數(shù)f(x)=(x2+ax﹣1)ex﹣1的極值點,
可得:﹣4+a+(3﹣2a)=0.
解得a=﹣1.
可得f′(x)=(2x﹣1)ex﹣1+(x2﹣x﹣1)ex﹣1 ,
=(x2+x﹣2)ex﹣1 , 函數(shù)的極值點為:x=﹣2,x=1,
當x<﹣2或x>1時,f′(x)>0函數(shù)是增函數(shù),x∈(﹣2,1)時,函數(shù)是減函數(shù),
x=1時,函數(shù)取得極小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.
故選:A.
【考點精析】通過靈活運用基本求導(dǎo)法則和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,掌握若兩個函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo);一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C與A,B兩點,圓M是以線段AB為直徑的圓.
(Ⅰ)證明:坐標原點O在圓M上;
(Ⅱ)設(shè)圓M過點P(4,﹣2),求直線l與圓M的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在同一個平面內(nèi),向量 , , 的模分別為1,1, , 與 的夾角為α,且tanα=7, 與 的夾角為45°.若 =m +n (m,n∈R),則m+n= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某園林基地培育了一種新觀賞植物,經(jīng)過了一年的生長發(fā)育,技術(shù)人員從中抽取了部分植株的高度(單位:厘米)作為樣本(樣本容量為)進行統(tǒng)計,按 分組做出頻率分布直方圖,并作出樣本高度的莖葉圖(圖中僅列出了高度在的數(shù)據(jù)).
(1)求樣本容量和頻率分布直方圖中的
(2)在選取的樣本中,從高度在80厘米以上(含80厘米)的植株中隨機抽取3株,設(shè)隨機變量表示所抽取的3株高度在 內(nèi)的株數(shù),求隨機變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當時,討論的單調(diào)性;
(2)設(shè),當時,若對任意,存在使,求實數(shù)取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣ )e﹣x(x≥ ).
(Ⅰ)求f(x)的導(dǎo)函數(shù);
(Ⅱ)求f(x)在區(qū)間[ ,+∞)上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體中, 兩兩垂直,且, , ,
.
(Ⅰ) 若點在線段上,且,求證: 平面;
(Ⅱ)求直線與平面所成的角的正弦值;
(Ⅲ)求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y= 的定義域為A,函數(shù)y=ln(1﹣x)的定義域為B,則A∩B=( )
A.(1,2)
B.(1,2]
C.(﹣2,1)
D.[﹣2,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點,,,分別為橢圓: 的左、右頂點,下頂點和右焦點,直線過點,與橢圓交于點,已知當直線軸時,.
(1)求橢圓的離心率;
(2)若當點與重合時,點到橢圓的右準線的距離為上.
①求橢圓的方程;
②求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com