【題目】如圖,某森林公園內(nèi)有一條寬為100米的筆直的河道(假設河道足夠長),現(xiàn)擬在河道內(nèi)圍出一塊直角三角形區(qū)域養(yǎng)殖觀賞魚.三角形區(qū)域記為,到河兩岸距離相等,分別在兩岸上,.為方便游客觀賞,擬圍繞區(qū)域在水面搭建景觀橋.為了使橋的總長度(即的周長)最短,工程師設計了以下兩種方案:

方案1:設,求出關于的函數(shù)解析式,并求出的最小值.

方案2:設米,求出關于的函數(shù)解析式,并求出的最小值.

請從以上兩種方案中自選一種解答.(注:如果選用了兩種解答方案,則按第一種解答計分)

【答案】答案不唯一,具體見解析.

【解析】

方案1:由,得,可得,.求解三角形可得,,即可得到關于的解析式,其中.,化為關于的函數(shù)求解;

方案2:由已知證明,得.,得,再求得,,可得,.然后利用基本不等式求最值.

解:方案,

中,,

,.

,

中,,

,

,其中.

,則,

,

,.

時,.

答:景觀橋總長的最小值為米;

方案,

中,,

,則,

.

,,,

,則,

.

,

.

當且僅當,且,

時取“.

答:景觀橋總長的最小值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】微信是現(xiàn)代生活中進行信息交流的重要工具.據(jù)統(tǒng)計,某公司200名員工中90%的人使用微信,其中每天使用微信時間在一小時以內(nèi)的有60人,其余的員工每天使用微信時間在一小時以上,若將員工分成青年(年齡小于40歲)和中年(年齡不小于40歲)兩個階段,那么使用微信的人中75%是青年人.若規(guī)定:每天使用微信時間在一小時以上為經(jīng)常使用微信,那么經(jīng)常使用微信的員工中都是青年人.

(1)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關系,列出并完成2×2列聯(lián)表:

(2)由列聯(lián)表中所得數(shù)據(jù)判斷,是否有99.9%的把握認為“經(jīng)常使用微信與年齡有關”?

(3)采用分層抽樣的方法從“經(jīng)常使用微信”的人中抽取6人,從這6人中任選2人,求選出的2人,均是青年人的概率.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

1求函數(shù)的單調(diào)區(qū)間;

2若不等式區(qū)間上恒成立,求實數(shù)的取值范圍;

3求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020517日晚“2019年感動中國人物名單揭曉,中國女排位列其中,在感動中國的舞臺上,她們的一句我們沒贏夠,再次鼓舞中國人民中國之光——中國女排,一次次在逆境中絕地反擊,贏得奧運冠軍,女排精神也是我們當前處于新冠逆境中的高三學子們學習的榜樣,前進的動力.一次比賽中,中國女排能夠闖入決賽的概率為0.8,在闖入決賽條件下中國女排能夠獲勝的概率是0.9,則中國女排闖進決賽且獲得冠軍的概率是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若,恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公元前5世紀,古希臘哲學家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面1000米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)?/span>10.當比賽開始后,若阿基里斯跑了1000米,此時烏龜便領先他100米,當阿基里斯跑完下一個100米時,烏龜領先他10米,當阿基里斯跑完下一個10米時,烏龜先他1....所以,阿基里斯永遠追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為0.001米時,烏龜爬行的總距離為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】北極冰融是近年來最引人注目的氣候變化現(xiàn)象之一白色冰面融化變成顏色相對較暗的海冰,被稱為“北極變暗”現(xiàn)象,21世紀以來,北極的氣溫變化是全球平均水平的2倍,被稱為“北極放大”現(xiàn)象.如圖為北極年平均海冰面積()與年平均濃度圖.則下列說法正確的是(

A.北極年海冰面積逐年減少

B.北極年海冰面積減少速度不斷加快

C.北極年海冰面積與年平均二氧化碳濃度大體成負相關

D.北極年海冰面積與年平均二氧化碳濃度大體成正相關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,,,,,則三棱錐外接球的表面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,,點上一點且

1)求證:平面平面;

2)若直線與平面所成的角的正弦值為,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案