精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=2x
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數m的取值范圍.

【答案】
(1)解:當x≤0時f(x)=0,

當x>0時, ,

有條件可得, ,

即22x﹣2×2x﹣1=0,解得 ,∵2x>0,∴ ,∴


(2)解:當t∈[1,2]時,

即m(22t﹣1)≥﹣(24t﹣1).∵22t﹣1>0,∴m≥﹣(22t+1).

∵t∈[1,2],∴﹣(1+22t)∈[﹣17,﹣5],

故m的取值范圍是[﹣5,+∞).


【解析】(1)當x≤0時得到f(x)=0而f(x)=2,所以無解;當x>0時解出f(x)=2求出x即可;(2)由 t∈[1,2]時,2tf(2t)+mf(t)≥0恒成立得到,得到f(t)= ,代入得到m的范圍即可.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知底角為45°的等腰梯形ABCD,底邊BC長為12,腰長為4 ,當一條垂直于底邊BC(垂足為F)的直線l從左至右移動(與梯形ABCD有公共點)時,直線l把梯形分成兩部分.

(1)令BF=x(0<x<12),試寫出直線右邊部分的面積y與x的函數解析式;
(2)在(1)的條件下,令y=f(x).構造函數g(x)=
①判斷函數g(x)在(4,8)上的單調性;
②判斷函數g(x)在定義域內是否具有單調性,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司今年年初用25萬元引進一種新的設備,投入設備后每年收益為21萬元.該公司第n年需要付出設備的維修和工人工資等費用an的信息如圖.

(1)求an;
(2)引進這種設備后,第幾年后該公司開始獲利;
(3)這種設備使用多少年,該公司的年平均獲利最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知圓 和圓 .

1)若直線過點,且被圓截得的弦長為,求直線的方程;

2)設為平面直角坐標系上的點,滿足:存在過點的無窮多對相互垂直的直線,它們分別與圓相交,且直線被圓截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】是空間兩條直線, 是空間兩個平面,則下列命題中不正確的是( )

A. 時,“”是“”的充要條件

B. 時,“”是“”的充分不必要條件

C. 時,“”是“”的必要不充分條件

D. 時,“”是“”的充分不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某農科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數,得到如下資料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差x/攝氏度

10

11

13

12

8

發(fā)芽數y/顆

23

25

30

26

16

該農科所確定的研究方案是:先從這5組數據中選取2組,用剩下的3組數據求線性回歸方程,再用被選取的2組數據進行檢驗.

(Ⅰ)求選取的2組數據恰好是不相鄰2天的數據的概率;

(Ⅱ)若選取的是12月1日與12月5日的2組數據,請根據12月2日至4日的數據,求出關于的線性回歸方程,由線性回歸方程得到的估計數據與所選取的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

附:參考格式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于函數 ,我們把使 的實數 叫做函數 的零點,且有如下零

點存在定理:如果函數 在區(qū)間 上的圖像是連續(xù)不斷的一條曲線,并且有 ,那么,函數 在區(qū)間 內有零點.給出下列命題:

若函數 上是單調函數,則 上有且僅有一個零點;

函數 個零點;

函數 的圖像的交點有且只有一個;

設函數 都滿足 ,且函數 恰有 個不同的零點,則這6個零點的和為18;

其中所有正確命題的序號為________(把所有正確命題的序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若曲線 處的切線互相平行,求 的值;

(2) 的單調區(qū)間;

(3) ,若對任意 ,均存在 ,使得 ,求 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= x3﹣x2+x.
(1)求函數f(x)在[﹣1,2]上的最大值和最小值;
(2)若函數g(x)=f(x)﹣4x,x∈[﹣3,2],求g(x)的單調區(qū)間.

查看答案和解析>>

同步練習冊答案