若關(guān)于x的不等式ax2≥ex的解集中的正整數(shù)解有且只有3個(gè),則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):函數(shù)恒成立問題
專題:計(jì)算題,不等式的解法及應(yīng)用
分析:由題意知a>0,則ax2≥ex化為a
ex
x2
,令f(x)=
ex
x2
,利用導(dǎo)數(shù)可求得f(x)的最小值f(2),根據(jù)f(x)的單調(diào)性和函數(shù)值f(1)、f(3)、f(4)的大小關(guān)系可得答案.
解答: 解:由題意知a>0,則ax2≥ex化為a
ex
x2
,
令f(x)=
ex
x2
,則f′(x)=
ex(x-2)
x3
,
當(dāng)0<x<2時(shí),f′(x)<0,f(x)遞減;當(dāng)x>2時(shí),f′(x)>0,f(x)遞增.
∴f(x)min=f(2)=
e2
4

又f(1)=e,f(3)=
e3
9
,f(4)=
e4
16
,且f(4)>f(1)>f(3),
不等式ax2≥ex的解集中的正整數(shù)解有且只有3個(gè),
∴e≤a≤
e4
16
,即實(shí)數(shù)a的取值范圍是[e,
e4
16
],
故答案為:[e,
e4
16
].
點(diǎn)評:該題考查函數(shù)恒成立,考查利用導(dǎo)數(shù)研究函數(shù)的最值,恰當(dāng)構(gòu)造函數(shù)借助導(dǎo)數(shù)求最值是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx-4,若x=-
1
3
與x=-1是f(x)的極值點(diǎn).
(1)求a、b及函數(shù)f(x)的極值;
(2)設(shè)g(x)=kx2+x-8(k∈R),試討論函數(shù)F(x)=f(x)-g(x)在區(qū)間[0,+∞)上的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將正奇數(shù)排成如下圖所示的三角形數(shù)陣(第k行有k個(gè)奇數(shù)),其中第i行第j個(gè)數(shù)表示為aij(i,j∈N*).例如a42=15,若aij=2013,則i-j=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察不等式:1+
1
2
+
1
3
<2,1+
1
2
+
1
3
+…+
1
7
<3,1+
1
2
+
1
3
+…+
1
15
<4,1+
1
2
+
1
3
+…+
1
31
<5,…,由此歸納第n個(gè)不等式為
 
.要用數(shù)學(xué)歸納法證明該不等式,由n=k(k≥1)時(shí)不等式成立,推證n=k+1時(shí),左邊應(yīng)增加的項(xiàng)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x (噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù),
x     3     4    5     6
    y     2.5     3     4     4.5
請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
 

參考公式:回歸方程為
y
=bx+a其中b=
n
i-1
xiyi-n
.
x
.
y
n
i-1
x
2
i
-n
-2
x
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以原點(diǎn)為頂點(diǎn)的拋物線C,焦點(diǎn)在x軸上,直線x-y=0與拋物線C交于A、B兩點(diǎn).若P(2,2)為AB的中點(diǎn),則拋物線C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知棱長為1的正方體ABCD-A1B1C1D1中,E是A1B1的中點(diǎn),則直線與AE與平面ABC1D1所成角的正弦值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面幾何中,有結(jié)論“三條高都相等的三角形中,三邊相等”成立.類比,在立體幾何中,四條高相等的四面體中,
 
相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實(shí)數(shù)x滿足log2x=2+sinθ,則|x+1|+|x-10|的值等于
 

查看答案和解析>>

同步練習(xí)冊答案