在斜三棱柱ABC-A1B1C1中,AB=BC=2,∠ABC=120°,又頂點(diǎn)A1在底面ABC上的射影落在AC上,側(cè)棱AA1與底面ABC成60°角,D為AC的中點(diǎn).
(1)求證:BD⊥AA1;
(2)如果二面角A1-BD-C1為直二面角,試求側(cè)棱CC1與側(cè)面A1ABB1的距離.

【答案】分析:(1)要證線線垂直,關(guān)鍵是證明線面垂直,利用面面垂直可得線面垂直,故可證;
(2)∠A1DC1為二面角A1-BD-C1的平面角,故∠A1DC1=90°,又∠A1AD為AA1與底面ABC所成的角,從而∠A1AD=60°.由于CC1∥側(cè)面A1ABB1,故CC1與側(cè)面A1ABB1的距離可轉(zhuǎn)化為點(diǎn)C到側(cè)面A1ABB1的距離,建立空間直角坐標(biāo)系,求出面A1ABB1的法向量,利用即可求得.
解答:證明:(1)在斜三棱柱ABC-A1B1C1中,因?yàn)锳1在底面ABC上射影落在AC上,則平面A1ACC1經(jīng)過底面ABC的垂線 
故側(cè)面A1C⊥面ABC.
又 BD為等腰△ABC底邊AC上中線,則BD⊥AC,從而BD⊥面AC.
∴BD⊥面A1C,又AA1?面A1C,
∴AA1⊥BD(4分)
(2)∠A1DC1為二面角A1-BD-C1的平面角,故∠A1DC1=90°,
又∠A1AD為AA1與底面ABC所成的角,從而∠A1AD=60°,
設(shè)側(cè)棱長為a,
由于
,類似地
在Rt△A1DC1中,A1D2+DC12=A1C12,即.(8分)
這樣△A1AD為等邊三角形,取AD的中點(diǎn)O,以O(shè)為原點(diǎn),如圖建立空間直角坐標(biāo)系.易知,
,
設(shè)面A1ABB1的法向量為,
,可取,
,
故點(diǎn)C到側(cè)面A1ABB1的距離為,
而CC1∥側(cè)面A1ABB1,故CC1與側(cè)面A1ABB1的距離為.(12分)
點(diǎn)評(píng):本題的考點(diǎn)是點(diǎn)、線、面間的距離計(jì)算,考查平面與平面垂直的性質(zhì),考查線面距離,考查利用空間向量求解空間距離,綜合性強(qiáng)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在斜三棱柱ABC-A′B′C′中,底面△ABC為正三角形,設(shè)AA′:AC=λ.頂點(diǎn)A′在底面ABC上的射影O是△ABC的中心,P為側(cè)棱CC′中點(diǎn),G為△PA′B′的重心.
(Ⅰ)求證:OG∥平面AA′B′B;
(Ⅱ)當(dāng)λ=
2
時(shí),求證:平面A′B′P⊥平面BB′C′C;
(Ⅲ)當(dāng)λ=1時(shí),求二面角C-A′B-P的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•武漢模擬)如圖,在斜三棱柱ABC-A'B'C'中,∠ABC=90°,則側(cè)面A'ACC'⊥側(cè)面ABC,又AA'和底面所成60°的角,且AA'=2a,AB=BC=
2
a

(1)求平面ABB'A'與底面ABC所成的角的正切值;
(2)求側(cè)面BB'C'C的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年江蘇省南京市金陵中學(xué)高三數(shù)學(xué)綜合試卷(解析版) 題型:解答題

在斜三棱柱ABC-A′B′C′中,底面△ABC為正三角形,設(shè)AA′:AC=λ.頂點(diǎn)A′在底面ABC上的射影O是△ABC的中心,P為側(cè)棱CC′中點(diǎn),G為△PA′B′的重心.
(Ⅰ)求證:OG∥平面AA′B′B;
(Ⅱ)當(dāng)λ=時(shí),求證:平面A′B′P⊥平面BB′C′C;
(Ⅲ)當(dāng)λ=1時(shí),求二面角C-A′B-P的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年江蘇省南京市高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

在斜三棱柱ABC-A′B′C′中,底面△ABC為正三角形,設(shè)AA′:AC=λ.頂點(diǎn)A′在底面ABC上的射影O是△ABC的中心,P為側(cè)棱CC′中點(diǎn),G為△PA′B′的重心.
(Ⅰ)求證:OG∥平面AA′B′B;
(Ⅱ)當(dāng)λ=時(shí),求證:平面A′B′P⊥平面BB′C′C;
(Ⅲ)當(dāng)λ=1時(shí),求二面角C-A′B-P的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年湖北省武漢市高三四月調(diào)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,在斜三棱柱ABC-A'B'C'中,∠ABC=90°,則側(cè)面A'ACC'⊥側(cè)面ABC,又AA'和底面所成60°的角,且AA'=2a,AB=BC=
(1)求平面ABB'A'與底面ABC所成的角的正切值;
(2)求側(cè)面BB'C'C的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案