【題目】如圖,棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內(nèi)作弧,并將兩弧各五等分,分點依次為、、、、以及、、、.一只螞蟻欲從點出發(fā),沿正方體的表面爬行至,則其爬行的最短距離為________.參考數(shù)據(jù):;

【答案】

【解析】

根據(jù)空間位置關(guān)系,將平面旋轉(zhuǎn)后使得各點在同一平面內(nèi),結(jié)合角的關(guān)系即可求得兩點間距離的三角函數(shù)表達式.根據(jù)所給參考數(shù)據(jù)即可得解.

棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內(nèi)作弧.

將平面旋轉(zhuǎn)至與平面共面的位置,如下圖所示:

,所以;

將平面旋轉(zhuǎn)至與平面共面的位置,將旋轉(zhuǎn)至與平面共面的位置,如下圖所示:

,所以;

因為,且由誘導(dǎo)公式可得

所以最短距離為,

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)恰有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為t為參數(shù),α[0π).以O為極點,x軸的非負半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρρcosθ+2,

1)若,求直線的極坐標(biāo)方程

2)若直線與曲線C有唯一公共點,求α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的一個焦點與拋物線的焦點相同,,為橢圓的左、右焦點,M為橢圓上任意一點,若的面積最大值為1.

1)求橢圓C的方程;

2)設(shè)不過原點的直線l與橢圓C交于不同的兩點AB,若直線l的斜率是直線、斜率的等比中項,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.

1)求曲線C的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;

2)若射線與曲線C交于點A(不同于極點O,與直線l交于點B,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)是定義在R上的單調(diào)函數(shù),若函數(shù)恰有個零點,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓, 過點的直線與橢圓交于M、N兩點(M點在N點的上方),與軸交于點E.

(1)當(dāng)時,求點M、N的坐標(biāo);

(2)當(dāng)時,設(shè),求證:為定值,并求出該值;

(3)當(dāng)時,點D和點F關(guān)于坐標(biāo)原點對稱,若△MNF的內(nèi)切圓面積等于,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了推行“智慧課堂”教學(xué),某老師分別用傳統(tǒng)教學(xué)和“智慧課堂”兩種不同的教學(xué)方式,在甲、乙兩個平行班級進行教學(xué)實驗,為了比較教學(xué)效果,期屮考試后,分別從兩個班級屮各隨機抽取20名學(xué)生的成績進行統(tǒng)計,結(jié)果如下表:記成績不低于70分者為“成績優(yōu)良”.

分數(shù)

甲班頻數(shù)

5

6

4

4

1

乙班頻數(shù)

1

3

6

5

5

(1)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷“成績優(yōu)良與教學(xué)方式是否有關(guān)”?

甲班

乙班

總計

成績優(yōu)良

p>成績不優(yōu)良

總計

附: .

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采川分層扣樣的方法扣取8人進行考核.在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.已知直線l的參數(shù)方程為t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=4sinθ+).

(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;

(2)若直線l與曲線C交于M,N兩點,求△MON的面積.

查看答案和解析>>

同步練習(xí)冊答案