精英家教網 > 高中數學 > 題目詳情
若焦點在軸上的橢圓的離心率為,則=(   )
A.B.C.D.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓C:的左、右頂點的坐標分別為,,離心率。
(Ⅰ)求橢圓C的方程:
(Ⅱ)設橢圓的兩焦點分別為,,點P是其上的動點,
(1)當 內切圓的面積最大時,求內切圓圓心的坐標;
(2)若直線與橢圓交于、兩點,證明直線與直線的交點在直線上。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C:的長軸長為4.
(1)若以原點為圓心,橢圓短半軸長為半徑的圓與直線相切,求橢圓焦點坐標;
(2)若點P是橢圓C上的任意一點,過原點的直線L與橢圓交于M,N兩點,直線PM,PN的斜率乘積為,求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分15分)
如圖,已知橢圓=1(2≤m≤5),過其左焦點且斜率為1的直線與橢圓及直線的交點從左到右的順序為AB、C、D,設
(Ⅰ)求的解析式;
(Ⅱ)求的最值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若橢圓的離心率為,則雙曲的離心率為( )
                                              

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

方程的曲線是焦點在軸上的橢圓,則的取值范圍是    

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知橢圓及直線,當直線被橢圓截得的弦最長時的直線方程為

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)已知橢圓的長軸,短軸端點分別是A,B,從橢圓上一點M向x軸作垂線,恰好通過橢圓的左焦點,向量是共線向量
(1)求橢圓的離心率
(2)設Q是橢圓上任意一點,分別是左右焦點,求的取值范圍

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓的方程為,則此橢圓的離心率為          
A.B.C.D.

查看答案和解析>>

同步練習冊答案