【題目】已知函數(shù)是關(guān)于的偶函數(shù).
(1)求的值;
(2)求證: 對(duì)任意實(shí)數(shù),函數(shù)的圖象與函數(shù)的圖象最多只有一個(gè)交點(diǎn).
【答案】(1);(2)證明見(jiàn)解析.
【解析】
(1)通過(guò)函數(shù)是關(guān)于的偶函數(shù),可得恒成立,可得
恒成立,從而可求的值;(2) 由, 得, 所以 ,令,利用單調(diào)性的定義可證明在上單調(diào)遞減,從而可得結(jié)論.
(1)因?yàn)?/span>f(x)是關(guān)于x的偶函數(shù),
所以log2(2 - x + 1) + k( - x) = log2(2x + 1) + kx, 即2kx = log2= - x, 解得k = -.
(2) 由, 得log2(2x + 1) -x =x + m,
所以 m = log2(2x + 1) -x = log2(1 +). 令h(x) = log2(1 +),
設(shè)x1, x2 R, 且x1 < x2, 則>, 所以log2(1 +) > log2(1 +),
所以h(x1) – h(x2) = log2(1 +) - log2(1 +) > 0, 即 h(x1) > h(x2), ∴ h(x)在R上單調(diào)遞減.
因此, 函數(shù)y = h(x)的圖象與直線(xiàn)y = m的圖象最多只有一個(gè)交點(diǎn). 所以, 對(duì)任意實(shí)數(shù)m, 函數(shù)y = f(x)的圖象與直線(xiàn)y =x + m的圖象最多只有一個(gè)交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C1:(x+1)2+y2=25,圓C2:(x﹣1)2+y2=1,動(dòng)圓C與圓C1和圓C2均內(nèi)切.
(1)求動(dòng)圓圓心C的軌跡E的方程;
(2)點(diǎn)P(1,t)為軌跡E上點(diǎn),且點(diǎn)P為第一象限點(diǎn),過(guò)點(diǎn)P作兩條直線(xiàn)與軌跡E交于A,B兩點(diǎn),直線(xiàn)PA,PB斜率互為相反數(shù),則直線(xiàn)AB斜率是否為定值,若是,求出定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,設(shè)直線(xiàn)l過(guò)點(diǎn) ,且直線(xiàn)l與曲線(xiàn)C:ρ=asinθ(a>0)有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】f(x)= .
(1)用直尺或三角板畫(huà)出y=f(x)的圖象;
(2)求f(x)的最小值和最大值以及單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O的方程為x2+y2=10.
(1)求直線(xiàn):x=1被⊙O截的弦AB的長(zhǎng);
(2)求過(guò)點(diǎn)(﹣3,1)且與⊙O相切的直線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中在 上為減函數(shù)的是( )
A.y=2cos2x﹣1
B.y=﹣tanx
C.
D.y=sin2x+cos2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4﹣1:平面幾何
如圖AB是⊙O的直徑,弦BD,CA的延長(zhǎng)線(xiàn)相交于點(diǎn)E,EF垂直BA的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求證:∠DEA=∠DFA;
(2)若∠EBA=30°,EF= ,EA=2AC,求AF的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)P(x0,y0)是函數(shù)f(x)圖象上任意一點(diǎn),且y02≥x02,則f(x)的解析式可以是_____.(填序號(hào))
①f(x)=x﹣②f(x)=ex﹣1(e≈2.718,是一個(gè)重要常數(shù))③f(x)=x+④y=x2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一年級(jí)某次數(shù)學(xué)競(jìng)賽隨機(jī)抽取100名學(xué)生的成績(jī),分組為[50,60),[60,70),[70,80),[80,90),[90,100],統(tǒng)計(jì)后得到頻率分布直方圖如圖所示:
(1)試估計(jì)這組樣本數(shù)據(jù)的眾數(shù)和中位數(shù)(結(jié)果精確到0.1);
(2)年級(jí)決定在成績(jī)[70,100]中用分層抽樣抽取6人組成一個(gè)調(diào)研小組,對(duì)高一年級(jí)學(xué)生課外學(xué)習(xí)數(shù)學(xué)的情況做一個(gè)調(diào)查,則在[70,80),[80,90),[90,100]這三組分別抽取了多少人?
(3)現(xiàn)在要從(2)中抽取的6人中選出正副2個(gè)小組長(zhǎng),求成績(jī)?cè)?/span>[80,90)中至少有1人當(dāng)選為正、副小組長(zhǎng)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com