在平面直角坐標系中,已知分別是橢圓的左、右焦點,橢圓與拋物線有一個公共的焦點,且過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點是橢圓在第一象限上的任一點,連接,過點作斜率為的直線,使得與橢圓有且只有一個公共點,設(shè)直線的斜率分別為,,試證明為定值,并求出這個定值;
(III)在第(Ⅱ)問的條件下,作,設(shè)交于點,
證明:當點在橢圓上移動時,點在某定直線上.
(Ⅰ)橢圓的方程為;(Ⅱ)3;(III)點在直線上.
解析試題分析:(Ⅰ)由拋物線的焦點求出橢圓的焦點,又橢圓過點,得:,
且,,解方程組可得橢圓的方程:
(Ⅱ)設(shè)出切點的坐標和切線的方程,利用直線和橢圓相切的條件,證明為定值.
(III)利用(Ⅱ)的結(jié)果,由,寫出直線的方程,可解出交于點
的坐標,進而證明當點在橢圓上移動時,點在某定直線上.
試題解析:(Ⅰ)由題意得 ,
又, 2分
消去可得,,解得或(舍去),則,
求橢圓的方程為. 4分
(Ⅱ)設(shè)直線方程為,并設(shè)點,
由.
, 6分
,當時,直線與橢圓相交,所以,,
由得,, 8分
,整理得:.而,代入中得
為定值. 10分
(用導數(shù)求解也可,若直接用切線公式扣4分,只得2分)
(III)的斜率為:,又由,
從而得直線的方程為:,聯(lián)立方程,
消去得方程,因為, 所以 ,
即點在直線上. 14分
考點:1、橢圓的標準方程;2、拋物線的標準方程;3、直線與橢圓的位置關(guān)系;
科目:高中數(shù)學 來源: 題型:解答題
已知點、,動點滿足:,且
(1)求動點的軌跡的方程;
(2)已知圓W: 的切線與軌跡相交于P,Q兩點,求證:以PQ為直徑的圓經(jīng)過坐標原點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知橢圓: 的離心率為 ,點 為其下焦點,點為坐標原點,過 的直線 :(其中)與橢圓 相交于兩點,且滿足:.
(1)試用 表示 ;
(2)求 的最大值;
(3)若 ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知曲線:.
(1)若曲線是焦點在軸上的橢圓,求的取值范圍;
(2)設(shè),過點的直線與曲線交于,兩點,為坐標原點,若為直角三角形,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知橢圓的右頂點為A(2,0),點P(2e,)在橢圓上(e為橢圓的離心率).
(1)求橢圓的方程;
(2)若點B,C(C在第一象限)都在橢圓上,滿足,且,求實數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓上的點到其兩焦點距離之和為,且過點.
(Ⅰ)求橢圓方程;
(Ⅱ)為坐標原點,斜率為的直線過橢圓的右焦點,且與橢圓交于點,,若,求△的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點在拋物線:上.
(1)若的三個頂點都在拋物線上,記三邊,,所在直線的斜率分別為,,,求的值;
(2)若四邊形的四個頂點都在拋物線上,記四邊,,,所在直線的斜率分別為,,,,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓()的右焦點為,離心率為.
(Ⅰ)若,求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于,兩點,分別為線段的中點. 若坐標原點在以為直徑的圓上,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓:.
(1)橢圓的短軸端點分別為(如圖),直線分別與橢圓交于兩點,其中點滿足,且.
①證明直線與軸交點的位置與無關(guān);
②若∆面積是∆面積的5倍,求的值;
(2)若圓:.是過點的兩條互相垂直的直線,其中交圓于、兩點,交橢圓于另一點.求面積取最大值時直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com