如圖,在四棱錐中,底面ABCD是一直角梯形,,,且PA=AD=DC=AB=1.

(1)證明:平面平面
(2)設(shè)AB,PA,BC的中點依次為M、N、T,求證:PB∥平面MNT
(3)求異面直線所成角的余弦值



(1)證明:先得
,推出,,根據(jù)得到平面平面;
(2) 。

解析試題分析:

(1)證明:∵,
又∵,
,∵,且
,又∵∴平面平面      4′
(2)連接MN,MT,NT; ∵M、N分別為AB、AP中點 ∴MN//PB
,∴PB∥平面MNT     7′
解:∵AB中點M,AP中點N,BC中點T,,則MN//PB,MT//AC
就是異面直線AC與PB所成角(或補角)。     9′
,∴在RT△PAB中,,
在RT△ADC中,,,在RT△ACT中,,
在RT△NAT中,,∴在△MNT中,
故異面直線AC與PB所成的角的余弦值為         12′
考點:本題主要考查立體幾何中的平行關(guān)系、垂直關(guān)系、角的計算。
點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用向量則能簡化證明過程。本題屬于立體幾何中的基本問題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
如圖4,在三棱柱中,△是邊長為的等邊三角形,
平面,,分別是,的中點.

(1)求證:∥平面;
(2)若上的動點,當與平面所成最大角的正切值為時,
求平面 與平面所成二面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
在四棱柱中,底面是直角梯形,AB∥CD,∠ABC=,AB=PB=PC=BC=2CD=2,平面PBC⊥平面ABCD

(1)求證:AB⊥平面PBC
(2)求三棱錐C-ADP的體積
(3)在棱PB上是否存在點M使CM∥平面PAD?
若存在,求的值。若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,已知點B在以AC為直徑的圓上,SA⊥面ABC,AESBE,AFSCF.

(I)證明:SCEF;
(II)若求三棱錐SAEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分) 如圖四棱柱ABCD-A1B1C1D1的底面ABCD為正方形,側(cè)棱與底邊長均為a,
且∠A1AD=∠A1AB=60°。

①求證四棱錐 A1-ABCD為正四棱錐;
②求側(cè)棱AA1到截面B1BDD1的距離;
③求側(cè)面A1ABB1與截面B1BDD1的銳二面角大小。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,已知三棱柱ABC-A1B1C1,側(cè)面BCC1B1丄底面ABC.

(I)若M、N分別是AB,A1C的中點,求證:MN//平面BCC1B1
(II)若三棱柱ABC-A1B1C1的各棱長均為2,側(cè)棱BB1與底面 ABC所成的角為60°.問在線段A1C1上是否存在一點P,使得平面B1CP丄平面ACC1A1,若存在,求C1P與PA1的比值,若不存在,說明 理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,長方體中,,點上,且

(Ⅰ)證明:平面;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱錐中,,,中點,中點,且為正三角形.

(1)求證:平面.
(2)求證:平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,的中點.

(1)當時,求平面與平面的夾角的余弦值;
(2)當為何值時,在棱上存在點,使平面

查看答案和解析>>

同步練習冊答案