【題目】煉鋼是一個氧化降碳的過程,鋼水含碳量的多少直接影響冶煉時間的長短,因此必須掌握鋼水含碳量和冶煉時間的關(guān)系.如果已測得爐料熔化完畢時,鋼水的含碳量x與冶煉時間y(從爐料熔化完畢到出鋼的時間)的一些數(shù)據(jù),如下表所示:
x/0.01% | 104 | 180 | 190 | 177 | 147 | 134 | 150 | 191 | 204 | 121 |
y/min | 100 | 200 | 210 | 185 | 155 | 135 | 170 | 205 | 235 | 125 |
(1)作出散點(diǎn)圖,你能從散點(diǎn)圖中發(fā)現(xiàn)含碳量與冶煉時間的一般規(guī)律嗎?
(2)求回歸直線方程.
(3)預(yù)測當(dāng)鋼水含碳量為160時,應(yīng)冶煉多少分鐘?
【答案】(1)詳見解析;(2)=1.267 3x-30.5145;(3) 大約冶煉172 min.
【解析】【試題分析】(1)根據(jù)數(shù)據(jù)作出散點(diǎn)圖.(2)利用回歸直線方程計算公式計算出回歸直線方程.(3)將代入回歸直線方程,可求得冶煉時間的預(yù)測值.
【試題解析】
(1)以x軸表示含碳量,y軸表示冶煉時間,可作散點(diǎn)圖如圖所示:
從圖中可看出,各點(diǎn)散布在一條直線附近,即它們線性相關(guān).
(2)列出下表,并用科學(xué)計算器進(jìn)行計算:
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
xi | 104 | 180 | 190 | 177 | 147 | 134 | 150 | 191 | 204 | 121 |
yi | 100 | 200 | 210 | 185 | 155 | 135 | 170 | 205 | 235 | 125 |
xiyi | 10 400 | 36 000 | 39 900 | 32 745 | 22 785 | 18 090 | 25 500 | 39 155 | 47 940 | 15 125 |
=159.8,=172.=265 448,=312 350,xiyi=287 640 |
設(shè)所求的回歸直線方程為=bx+a,其中a,b的值使Q=(yi-bxi-a)2的值最小.≈1.267 3,≈-30.514 5,
即所求的回歸直線方程為=1.267 3x-30.514 5.
(3)當(dāng)x=160時,y=1.267 3×160-30.514 5≈172(min),即大約冶煉172 min.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=a(x﹣5)2+6lnx,其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸相交于點(diǎn)(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙二人參加某體育項(xiàng)目訓(xùn)練,近期的五次測試成績得分情況如圖所示.
(1)分別求出兩人得分的平均數(shù)與方差;
(2)根據(jù)圖和上面算得的結(jié)果,對兩人的訓(xùn)練成績作出評價.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的一個頂點(diǎn)為A(2,3),兩條高所在直線方程為x-2y+3=0和x+y-4=0,求△ABC三邊所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一容量為50的樣本,數(shù)據(jù)的分組以及各組的頻數(shù)如下:
[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5],4.
(1)列出樣本的頻率分布表.
(2)畫出頻率分布直方圖.
(3)根據(jù)頻率分布表,估計數(shù)據(jù)落在[15.5,24.5)內(nèi)的可能性約是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法: ①分類變量A與B的隨機(jī)變量K2越大,說明“A與B有關(guān)系”的可信度越大.
②以模型y=cekx去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè)z=lny,將其變換后得到線性方程z=0.3x+4,則c,k的值分別是e4和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為y=a+bx中,b=1, =1, =3,
則a=1.正確的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
男性 | 女性 | 合計 | |
反感 | 10 | ||
不反感 | 8 | ||
合計 | 30 |
已知在這30人中隨機(jī)抽取1人抽到反感“中國式過馬路”的路人的概率是 .
(Ⅰ)請將上面的列聯(lián)表補(bǔ)充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路”與性別是否有關(guān)?
(Ⅱ)若從這30人中的女性路人中隨機(jī)抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
提示:可參考試卷第一頁的公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若函數(shù)g(x)=f(x)﹣mx﹣m在(﹣1,1]內(nèi)有且僅有兩個不同的零點(diǎn),則實(shí)數(shù)m的取值范圍為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com