如圖,正方體ABCD-A1B1C1D1中,AB=2.,點E為AD的中點,點F在CD上,若EF∥平面AB1C,則線段EF的長度等于________.


分析:根據(jù)已知EF∥平面AB1C和線面平行的性質(zhì)定理,證明EF∥AC,又點E為AD的中點,點F在CD上,以及三角形中位線定理可知點F是CD的中點,從而求得線段EF的長度.
解答:解:∵EF∥平面AB1C,EF⊆平面AC,平面AB1C∩平面AC=AC,
∴EF∥AC,
又點E為AD的中點,點F在CD上,
∴點F是CD的中點,
∴EF=
故答案為
點評:此題是個基礎(chǔ)題.考查線面平行的性質(zhì)定理,同時考查學(xué)生對基礎(chǔ)知識的記憶、理解和熟練應(yīng)用的能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為a,它的各個頂點都在球O的球面上,問球O的表面積.
(1) 如果球O和這個正方體的六個面都相切,則有S=
 

(2)如果球O和這個正方體的各條棱都相切,則有S=
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為BB1和A1D1的中點.證明:向量
A1B
、
B1C
、
EF
是共面向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1棱長為8,E、F分別為AD1,CD1中點,G、H分別為棱DA,DC上動點,且EH⊥FG.
(1)求GH長的取值范圍;
(2)當GH取得最小值時,求證:EH與FG共面;并求出此時EH與FG的交點P到直線B1B的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,若E、F、G分別為棱BC、C1C、B1C1的中點,O1、O2分別為四邊形ADD1A1、A1B1C1D1的中心,則下列各組中的四個點不在同一個平面上的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方體ABCD-A1B1C1D1中,E、F、G、H分別是所在棱的三等分點,且BF=DE=C1G=C1H=
13
AB

(1)證明:直線EH與FG共面;
(2)若正方體的棱長為3,求幾何體GHC1-EFC的體積.

查看答案和解析>>

同步練習冊答案