【題目】在一次抽樣調查中測得樣本的6組數(shù)據(jù),得到一個變量關于的回歸方程模型,其對應的數(shù)值如下表:

2

3

4

5

6

7

(1)請用相關系數(shù)加以說明之間存在線性相關關系(當時,說明之間具有線性相關關系);

(2)根據(jù)(1)的判斷結果,建立關于的回歸方程并預測當時,對應的值為多少(精確到).

附參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:

,,相關系數(shù)公式為:.

參考數(shù)據(jù):

,,.

【答案】(1) 之間存在線性相關關系;(2)0.38 ,.

【解析】試題分析:

(1)由題意求得;,說明之間存在線性相關關系;

(2)結合所給數(shù)據(jù)可求得回歸方程為,.據(jù)此預測當時,對應的值為.

試題解析:

(1)由題意,計算,

,,.

,說明之間存在線性相關關系;

(2).

.

的線性回歸方程為.

代入回歸方程得.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知極坐標系的極點在直角坐標系的原點處,極軸與x軸非負半軸重合,直線的極坐標方程為,圓C的參數(shù)方程為,

(1)求直線被圓C所截得的弦長;

(2)已知點,過點的直線與圓所相交于不同的兩點,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為調查該校學生每周使用手機上網(wǎng)的時間,隨機收集了若干位學生每周使用手機上網(wǎng)的時間的樣本數(shù)據(jù)(單位:小時),將樣本數(shù)據(jù)分組為,繪制了如下圖所示的頻率分布直方圖,已知內(nèi)的學生有5人.

(1)求樣本容量,并估計該校學生每周平均使用手機上網(wǎng)的時間;

(2)將使用手機上網(wǎng)的時間在內(nèi)定義為“長時間看手機”;使用手機上網(wǎng)的時間在內(nèi)定義為“不長時間看手機”.已知在樣本中有位學生不近視,其中“不長時間看手機”的有位學生.請將下面的列聯(lián)表補充完整,并判斷能否在犯錯誤的概率不超過的前提下認為該校學生長時間看手機與近視有關.

近視

不近視

合計

長時間看手機

不長時間看手機

15

合計

25

參考公式和數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的圖象在處的切線方程為,求的值;

(2)若,使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)對于任意的都有,當時,則

(1)判斷的奇偶性;

(2)求上的最大值;

(3)解關于的不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣

(1)若a>0,試判斷f(x)在定義域內(nèi)的單調性;

(2)若f(x)在[1,e]上的最小值為,求實數(shù)a的值;

(3)若f(x)<x2在(1,+∞)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線上的任意一點到兩定點、距離之和為,直線交曲線兩點,為坐標原點.

1)求曲線的方程;

2)若不過點且不平行于坐標軸,記線段的中點為,求證:直線的斜率與的斜率的乘積為定值;

3)若直線過點,求面積的最大值,以及取最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0),e= ,其中F是橢圓的右焦點,焦距為2,直線l與橢圓C交于點A、B,點A,B的中點橫坐標為 ,且 (其中λ>1).
(1)求橢圓C的標準方程;
(2)求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過,三點.

(1)求圓的標準方程;

(2)若過點N 的直線被圓截得的弦AB的長為,求直線的傾斜角.

查看答案和解析>>

同步練習冊答案