如圖正四面體ABCD,E為棱BC上的動(dòng)點(diǎn),則異面直線BD和AE所成角的余弦值的范圍為 _______.
設(shè)正四面體的邊長(zhǎng)為1,,則
過(guò)點(diǎn)于點(diǎn),連接,所以就是異面直線的所成角
可得,則
中,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203914761921.png" style="vertical-align:middle;" />
所以
同理可得,
所以在中,

當(dāng),,此時(shí);當(dāng)時(shí),重合,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203915416571.png" style="vertical-align:middle;" />,所以此時(shí)
綜上可得,異面直線的所成角的余弦值的取值范圍為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
如圖5所示,在三棱錐中,,平面平面,于點(diǎn), ,

(1)證明△為直角三角形;
(2)求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖所示的幾何體是由以正三角形為底面的直棱柱
被平面所截而得. ,的中點(diǎn).
(Ⅰ)當(dāng)時(shí),求平面與平面的夾角的余弦值;
(Ⅱ)當(dāng)為何值時(shí),在棱上存在點(diǎn),使平面?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題共13分)如圖,矩形ABCD中,平面ABE,BE=BC,F(xiàn)為CE上的點(diǎn),且平面ACE。

(1)求證:平面BCE;
(2)求證:AE//平面BFD。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

四面體中,中點(diǎn),中點(diǎn),,則直
所成的角大小為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列條件中,能使的條件是(   )
A.平面內(nèi)有無(wú)數(shù)條直線平行于平面
B.平面與平面同平行于一條直線
C.平面內(nèi)有兩條直線平行于平面
D.平面內(nèi)有兩條相交直線平行于平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知斜三棱柱,,,在底面上的射影恰為的中點(diǎn),又知.

(Ⅰ)求證:平面;    
(Ⅱ)求到平面的距離;
(Ⅲ)求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)
在四棱錐PABCD中,底面ABCD是一直角梯,
與底面成30°角.
(1)若為垂足,求證:;
(2)求平面PAB與平面PCD所成的銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題12分)如圖,在棱長(zhǎng)為2的正方體中,的中點(diǎn),的中點(diǎn).
(1)求證://平面;(2)求三棱錐的體積;
(3)求二面角的余弦值。

查看答案和解析>>

同步練習(xí)冊(cè)答案