中,角的對邊分別為,且
(1)求角的大。
(2)求的值.

(1);(2)

解析試題分析:(1)首先統(tǒng)一角統(tǒng)一函數(shù)名稱,將化為單角,然后解關(guān)于的方程即得.(2)由.由于,故只需求出的值即可.由,可得.再用余弦定理可得,由此便可得的值,從而問題得解.
試題解析:(1)由得,,解得(舍去),于是.       (4分)
(2)由,得,
由余弦定理得,,又結(jié)合(1)及已知得,
,解得.     (8分)
.   (12分)
考點:1、三角恒等變換;2、解三角形.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,某旅游景點有一座風景秀麗的山峰,山上有一條筆直的山路BC和一條索道AC,小王和小李打算不坐索道,而是花2個小時的時間進行徒步攀登.已知,,(千米),(千米).假設(shè)小王和小李徒步攀登的速度為每小時1200米,請問:兩位登山愛好者能否在2個小時內(nèi)徒步登上山峰.
(即從B點出發(fā)到達C點)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在△中,角的對邊分別為,且,
(1)求角的大小;
(2)若,,求邊的長和△的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)
(1)求的最小正周期和值域;
(2)在銳角△中,角的對邊分別為,若,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,角所對的邊分別為,函數(shù)處取得最大值.
(1)求角A的大小.
(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,角A、B、C的對邊分別為a、b、c,S是該三角形的面積
(1)若,求角B的度數(shù)
(2)若a=8,B=,S=,求b的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上.在小艇出發(fā)時,輪船位于港口O北偏西30°且與該港口相距20海里的A處,并正以30海里/時的航行速度沿正東方向勻速行駛.假設(shè)該小艇沿直線方向以v海里/時的航行速度勻速行駛,經(jīng)過t小時與輪船相遇.

(1)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(2)假設(shè)小艇的最高航行速度只能達到30海里/時,試設(shè)計航行方案(即確定航行方向和航行速度的大小),使得小艇能以最短時間與輪船相遇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

三角形ABC中,內(nèi)角A、B、C所對的邊a、b、c成公比小于1的等比數(shù)列,且.(1)求內(nèi)角B的余弦值;(2)若,求三角形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在銳角△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,且2asinB=b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面積.

查看答案和解析>>

同步練習冊答案