設P1,P2,…,Pj為集合P={1,2,3,…,i}的子集,其中i,j為正整數(shù).記aij為滿足P1∩P2∩…∩Pj=∅的有序子集組(P1,P2,…,Pj)的個數(shù).
(Ⅰ)求a22的值;
(Ⅱ)求aij的表達式.
分析:(1)根據(jù)題意可得在P的2元子集中,元素“1”的包含關系有3種情形:屬于P1且不屬于P2;屬于P2且不屬于P1和都不屬于P1P2,同理元素“2”也有3種情形,利用分步計數(shù)原理即可得到a22=3×3=9;
(2)類似(1)的分析加以討論,考慮P={1,2,…,i}中的元素“1”的情形,共有Cj0+Cj1+Cj2+…+Cjj-1=2j-1種情形,同理其它元素也都有2j-1種情形,由此根據(jù)分步計數(shù)原理可得aijaij=(2j-1)i
解答:解:(1)由題意得P1,P2為集合P={1,2}的子集,
 因為P1P2=∅,所以集合P={1,2}中的元素“1”共有如下3種情形:
 1∈P1且1∉P2;1∉P1且1∈ P2;1∉P1且1∉P2;
同理可得集合P={1,2}中的元素“2”也有3種情形,
根據(jù)分步計數(shù)原理,可得a22=3×3=9;                        …4分
(2)考慮P={1,2,…,i}中的元素“1”,有如下情形:
1不屬于P1,P2,…,Pj中的任何一個,共Cj0種;
1只屬于P1,P2,…,Pj中的某一個,共Cj1種;
1只屬于P1,P2,…,Pj中的某兩個,共Cj2種;
         …
1只屬于P1P2,…,Pj中的某(j-1)個,共Cjj-1種,
根據(jù)分類計數(shù)原理得,元素“1”共有Cj0+Cj1+Cj2+…+Cjj-1=2j-1種情形,…8分
同理可得,集合P={1,2,…,i}中其它任一元素均有(2j-1)種情形,
根據(jù)分步乘計數(shù)原理,得滿足條件有序子集組(P1,P2,…,Pj)的個數(shù)總共有(2j-1)i個,
aij=(2j-1)i.            …10分
點評:本題著重考查了集合的定義與運算、排列組合公式的應用和分類計數(shù)原理、分步計數(shù)原理等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,過點M(-2,0)的直線l與橢圓
x22
+y2=1
交于p1、P2兩點,點P是線段p1P2的中點.設直線l的斜率為k1(k1≠0),直線OP的斜率為k2,則k1k2=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C的方程為
x2
4
-
y2
5
=1,若直線x-my-3=0截雙曲線的一支所得弦長為5.
(I)求m的值;
(II)設過雙曲線C上的一點P的直線與雙曲線的兩條漸近線分別交于P1,P2,且點P分有向線段
P1P2
所成的比為λ(λ>0).當λ∈[
3
4
,
3
2
]
時,求|
OP1
||
OP2
|(O為坐標原點)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點P的軌跡方程為:
x2
4
-
y2
5
=1(x>2),O是坐標原點.
①若直線x-my-3=0截動點P的軌跡所得弦長為5,求實數(shù)m的值;
②設過P的軌跡上的點P的直線與該雙曲線的兩漸近線分別交于點P1、P2,且點P分有向線段
P1P2
所成的比為λ(λ>0),當λ∈[
3
4
,
3
2
]時,求|
OP1
|•|
OP2
|的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•四川)設P1,P2,…Pn為平面α內(nèi)的n個點,在平面α內(nèi)的所有點中,若點P到點P1,P2,…Pn的距離之和最小,則稱點P為P1,P2,…Pn的一個“中位點”,例如,線段AB上的任意點都是端點A,B的中位點,現(xiàn)有下列命題:
①若三個點A、B、C共線,C在線段AB上,則C是A,B,C的中位點;
②直角三角形斜邊的中點是該直角三角形三個頂點的中位點;
③若四個點A、B、C、D共線,則它們的中位點存在且唯一;
④梯形對角線的交點是該梯形四個頂點的唯一中位點.
其中的真命題是
①④
①④
(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•遂寧二模)己知雙曲線C的方程為
x2
4
-
y2
5
=1
,若直線x-my-3=0截雙曲線的一支所得弦長為5.
(Ⅰ)求m的值;
(Ⅱ)設過雙曲線C上的一點P的直線與雙曲線的兩條漸近線分別交于點P1、P2,且點P分有向線段
P1P2
所成的比為λ(λ>0),當λ=
2
3
時,求|
op1
|•|
OP2
|
(O為坐標原點)的值.

查看答案和解析>>

同步練習冊答案