拋物線C:x2=2py(p>0)上一點(diǎn)P(m,4)到其焦點(diǎn)的距離為5.
(I)求p與m的值;
(II)若直線l:y=kx-1與拋物線C相交于A、B兩點(diǎn),l1、l2分別是該拋物線在A、B兩點(diǎn)處的切線,M、N分別是l1、l2與該拋物線的準(zhǔn)線交點(diǎn),求證:|
AM
+
BN
|>4
2
分析:(1)根據(jù)拋物線的定義利用點(diǎn)P(m,4)到其焦點(diǎn)的距離求得p,拋物線方程可得,進(jìn)而把點(diǎn)P代入求得m.
(2)把直線與拋物線方程聯(lián)立根據(jù)判別式大于0求得k的范圍.設(shè)A(x′1,y1),B(x′2,y2),根據(jù)韋達(dá)定理可得到x′1+x2和x1x2的表達(dá)式,對(duì)拋物線方程進(jìn)行求導(dǎo)得到拋物線在A處的切線的方程,令y=-1代入求得M點(diǎn)的橫坐標(biāo),同理可求得N點(diǎn)的橫標(biāo)做,進(jìn)而根據(jù)x1x2=4,求得M點(diǎn)橫坐標(biāo)和N點(diǎn)橫坐標(biāo)的關(guān)系,表示出
AM
BN
,根據(jù)x′1+x2和y′1+y2求得|
AM
+
BN
|
的表達(dá)式,根據(jù)k的范圍證明原式.
解答:解:(I)根據(jù)拋物線定義,4+
p
2
=5
,解得p=2
∴拋物線方程為x2=4y,
將P(m,4)代入x2=4y,解得m=±4
(II)l:y=kx-1代入x2=4y得x2-4kx+4=0,①
△=16k2-16>0,k2>1,k∈(-∞,-1)∪(1,+∞),
設(shè)A(x′1,y1),B(x′2,y2),則x′1+x2=4k,x1x2=4
x2=4y?y=
1
4
x2?y′=
1
2
x
,
所以拋物線在A處的切線l1的方程為y-
1
4
x
2
1
=
1
2
x1(x-x1)
,
y=
1
2
x1x-
1
4
x
2
1

令y=-1,得xM=
x
2
1
-4
2x1

同理,得xN=
x
2
2
-4
2x2
.x1、x2是方程①的兩個(gè)實(shí)根,故x1x2=4,即x2=
4
x1
,
從而有xN=
x
2
2
-4
2x2
=
(
4
x1
)
2
-4
8
x1
=
4-
x
2
1
2x1
=-xM

AM
=(xm-x1,-1-y1)
,
BN
=(-xm-x2,-1-y2)
,
∵x′1+x2=4k,y′1+y2=k(x′1+x2)-2=4k2-2
|
AM
+
BN
|=
(x1+x2)2+(2+y1+y2)2
=
32(k4+k2)
,
∵k2>1,∴
32(k4+k2)
>4
2
,
|
AM
+
BN
|=
(
x12
4
+
x22
4
+4)
2
-4
>4
2
點(diǎn)評(píng):本題主要考查了直線與拋物線的關(guān)系.考查了學(xué)生綜合分析問(wèn)題和解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,設(shè)拋物線方程為x2=2py(p>0),M為直線y=-2p上任意一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為A,B.
(Ⅰ)求證:A,M,B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(Ⅱ)已知當(dāng)M點(diǎn)的坐標(biāo)為(2,-2p)時(shí),|AB|=4
10
.求此時(shí)拋物線的方程;
(Ⅲ)是否存在點(diǎn)M,使得點(diǎn)C關(guān)于直線AB的對(duì)稱點(diǎn)D在拋物線x2=2py(p>0)上,其中,點(diǎn)C滿足
OC
=
OA
+
OB
(O為坐標(biāo)原點(diǎn)).若存在,求出所有適合題意的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•合肥三模)已知拋物線C的方程為x2=2py(p>0),過(guò)拋物線上點(diǎn)M(-2
p
,p)作△MAB,A、B兩均在拋物線上.過(guò)M作x軸的平行線,交拋物線于點(diǎn)N.
(I)若MN平分∠AMB,求證:直線AB的斜率為定值;
(II)若直線AB的斜率為
p
,且點(diǎn)N到直線MA,MB的距離的和為4p,試判斷△MAB的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年山東卷理)(本小題滿分14分)

如圖,設(shè)拋物線方程為x2=2py(p>0),M為 直線y=-2p上任意一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為A,B.

(Ⅰ)求證:A,M,B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;

(Ⅱ)已知當(dāng)M點(diǎn)的坐標(biāo)為(2,-2p)時(shí),,求此時(shí)拋物線的方程;

(Ⅲ)是否存在點(diǎn)M,使得點(diǎn)C關(guān)于直線AB的對(duì)稱點(diǎn)D在拋物線上,其中,點(diǎn)C滿足O為坐標(biāo)原點(diǎn)).若存在,求出所有適合題意的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)拋物線方程為x2=2py(p>0),M為 直線y=-2p上任意一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為A,B.

(Ⅰ)求證:AM,B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;

(Ⅱ)已知當(dāng)M點(diǎn)的坐標(biāo)為(2,-2p)時(shí),,求此時(shí)拋物線的方程;

(Ⅲ)是否存在點(diǎn)M,使得點(diǎn)C關(guān)于直線AB的對(duì)稱點(diǎn)D在拋物線上,其中,點(diǎn)C滿足O為坐標(biāo)原點(diǎn)).若存在,求出所有適合題意的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)拋物線方程為x2=2py(p>0),M為 直線y=-2p上任意一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為A,B.

(Ⅰ)求證:A,M,B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;

(Ⅱ)已知當(dāng)M點(diǎn)的坐標(biāo)為(2,-2p)時(shí),,求此時(shí)拋物線的方程;

(Ⅲ)是否存在點(diǎn)M,使得點(diǎn)C關(guān)于直線AB的對(duì)稱點(diǎn)D在拋物線上,其中,點(diǎn)C滿足O為坐標(biāo)原點(diǎn)).若存在,求出所有適合題意的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案