【題目】設(shè)函數(shù)f(x)=(x﹣a)2lnx,a∈R.
(I)若x=e是y=f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(Ⅱ)若函數(shù)y=f(x)﹣4e2只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍
【答案】(1)a=e或a=3e;(2)(-∞,3e)
【解析】
試題解析:(Ⅰ)函數(shù)f(x)=(x﹣a)2 lnx,a∈R.
∴ f′(x)=2(x﹣a)lnx+=(x﹣a)(2lnx+1﹣),
由x=e是f(x)的極值點(diǎn),所以f′(e)=0
解得a=e或a=3e.
經(jīng)檢驗(yàn),a=e或a=3e符合題意,所以a=e或a=3e;
(Ⅱ)由已知得方程f(x)=4e2只有一個(gè)根,
即曲線f(x)與直線y=4e2只有一個(gè)公共點(diǎn).
易知f(x)∈(﹣∞,+∞),設(shè),
①當(dāng)a≤0時(shí),易知函數(shù)f(x)在(0,+∞)上是單調(diào)遞增的,滿足題意;
②當(dāng)0<a≤1時(shí),易知h(x)是單調(diào)遞增的,又h(a)=2lna<0,h(1)=1﹣a≥0,
∴x0∈(a,1),h(x0)=0,
當(dāng)0<x<a時(shí),f′(x)=(x﹣a)(2lnx+1﹣)>o
∴f(x)在(0,a)上是單調(diào)遞增,
同理f(x)在(a,x0)上單調(diào)遞減,在(x0,+∞)上單調(diào)遞增,
又極大值f(a)=0,所以曲線f(x) 滿足題意;
③當(dāng)a>1時(shí),h(1)=1﹣a<0,h(a)=2lna>0,
∴x0∈(1,a),h(x0)=0,即,得a﹣x0=2x0lnx0,
可得f(x)在(0,x0)上單調(diào)增,在(x0,a)上單調(diào)遞減,在(a,+∞)上單調(diào)遞增
又f(a)=0,若要函數(shù)f(x)滿足題意,只需f(x0)<4e2,即(x0-a)2lnx0<4e2
∴x02ln3x0<e2, 由x0>1,知g(x)=x2ln3x>0,且在[1, +∞)上單調(diào)遞增,
由g(e)=e2,得1<x0<e,因?yàn)閍=x0+2x0lnx0在[1,+∞)上單調(diào)遞增,
所以1<a<3e;
綜上知,a∈(-∞,3e)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次測(cè)量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88,若樣本B數(shù)據(jù)恰好是樣本A數(shù)據(jù)都加上2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對(duì)應(yīng)相同的是( )
A. 眾數(shù) B. 平均數(shù)
C. 中位數(shù) D. 標(biāo)準(zhǔn)差
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為,離心率為,橢圓與軸與左焦點(diǎn)與點(diǎn)的距離為.
(1)求橢圓方程;
(2)過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn),當(dāng)面積為時(shí),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】菜農(nóng)定期使用低害殺蟲(chóng)農(nóng)藥對(duì)蔬菜進(jìn)行噴灑, 以防止害蟲(chóng)的危害, 但采集上市時(shí)蔬菜仍存有少量的殘留農(nóng)藥, 食用時(shí)需要用清水清洗干凈, 下表是用清水(單位:千克) 清洗該蔬菜千克后, 蔬菜上殘留的農(nóng)藥(單位:微克) 的統(tǒng)計(jì)表:
(1)在下面的坐標(biāo)系中, 描出散點(diǎn)圖, 并判斷變量與的相關(guān)性;
(2)若用解析式作為蔬菜農(nóng)藥殘量與用水量的回歸方程, 令,計(jì)算平均值與,完成以下表格(填在答題卡中) ,求出與的回歸方程.( 精確到)
(3)對(duì)于某種殘留在蔬菜上的農(nóng)藥,當(dāng)它的殘留量低于微克時(shí)對(duì)人體無(wú)害, 為了放心食用該蔬菜, 請(qǐng)
估計(jì)需要用多少千克的清水清洗一千克蔬菜?(精確到,參考數(shù)據(jù))
(附:線性回歸方程中系數(shù)計(jì)算公式分別為;
, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)鋁合金窗分為上、下兩欄,四周框架和中間隔檔的材料為鋁合金,寬均為6,上欄與下欄的框內(nèi)高度(不含鋁合金部分)的比為1:2,此鋁合金窗占用的墻面面積為28800,設(shè)該鋁合金窗的寬和高分別為,鋁合金窗的透光部分的面積為.
(1)試用表示;
(2)若要使最大,則鋁合金窗的寬和高分別為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一對(duì)父子參加一個(gè)親子摸獎(jiǎng)游戲,其規(guī)則如下:父親在裝有紅色、白色球各兩個(gè)的甲袋子里隨機(jī)取兩個(gè)球,兒子在裝有紅色、白色、黑色球各一個(gè)的乙袋子里隨機(jī)取一個(gè)球,父子倆取球互相獨(dú)立,兩人各摸球一次合在一起稱為一次摸獎(jiǎng),他們?nèi)〕龅娜齻(gè)球的顏色情況與他們獲得的積分對(duì)應(yīng)如下表:
所取球的情況 | 三個(gè)球均為紅色 | 三個(gè)球均為不同色 | 恰有兩球?yàn)榧t色 | 其他情況 |
所獲得的積分 | 180 | 90 | 60 | 0 |
(1)求一次摸獎(jiǎng)中,所取的三個(gè)球中恰有兩個(gè)是紅球的概率;
(2)設(shè)一次摸獎(jiǎng)中,他們所獲得的積分為,求的分布列及均值(數(shù)學(xué)期望);
(3)按照以上規(guī)則重復(fù)摸獎(jiǎng)三次,求至少有兩次獲得積分為60的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)()的圖象與直線()相切,并且切點(diǎn)橫坐標(biāo)依次成公差為的等差數(shù)列,且的最大值為1.
(1),求函數(shù)的單調(diào)遞增區(qū)間;
(2)將的圖象向左平移個(gè)單位,得到函數(shù)的圖象,若函數(shù)在上有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙二人用4張撲克牌(分別是紅桃2,紅桃3,紅桃4,方片4)完游戲,他們將撲克牌洗勻后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一張.
(1)設(shè)分別表示甲、乙抽到的牌的數(shù)字,寫(xiě)出甲乙二人抽到的牌的所有情況;
(2)若甲抽到紅桃3,則乙抽出的牌的牌面數(shù)字比3大的概率是多少?
(3)甲乙約定:若甲抽到的牌的牌面數(shù)字比乙大,則甲勝,反之,則乙勝,你認(rèn)為此游戲是否公平,說(shuō)明你的理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com