設(shè)函數(shù)f(x)在定義域[-1,1]是奇函數(shù),當(dāng)x∈[-1,0]時(shí),f(x)=-3x2
(1)當(dāng)x∈[0,1],求f(x);
(2)對任意a∈[-1,1],x∈[-1,1],不等式f(x)≤2cos2θ-asinθ+1都成立,求θ的取值范圍.
考點(diǎn):函數(shù)恒成立問題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)函數(shù)奇偶性的性質(zhì),即可求出當(dāng)x∈[0,1],f(x)的表達(dá)式;
(2)將不等式恒成立,轉(zhuǎn)換為最值恒成立即可得到結(jié)論.
解答: 解:(1)由題意可知,f(-x)=-f(x),
設(shè)x∈[0,1],則-x∈[-1,0],
則f(-x)=-3x2,
∴f(-x)=-3x2=-f(x),
即f(x)=3x2
(2)由(1)知f(x)=
-3x2x∈[-1,0)
3x2,x∈[0,1]
,
∵不等式f(x)≤2cos2θ-asinθ+1都成立,
∴f(x)max≤2cos2θ-asinθ+1都成立,
∵f(x)max=f(1)=3,
∴2cos2θ-asinθ+1≥3,
即2sin2θ+asinθ≤0,
設(shè)f(a)=2sin2θ+asinθ,
∵a∈[-1,1],
f(1)=2sin2θ+sinθ≤0
f(-1)=2sin2θ-sinθ≤0
,即
-
1
2
≤sinθ≤0
0≤sinθ≤
1
2

∴sinθ=0,
即θ=kπ,k∈Z.
點(diǎn)評:本題主要考查函數(shù)奇偶性的應(yīng)用,以及函數(shù)恒成立問題,利用函數(shù)奇偶性的定義是解決本題的根據(jù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是圓x2+y2=4上的動點(diǎn),過點(diǎn)P作PD⊥x軸,垂足為D,點(diǎn)M在DP的延長線上,且DM:DP=3:2;求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+
π
3

(1)求函數(shù)f(x)的對稱軸方程與函數(shù)的單調(diào)減區(qū)間;
(2)若x∈[0,
π
2
],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的三個(gè)內(nèi)角A、B、C所對邊的長分別為a,b,c,已知a,b,c成等比數(shù)列,且sinAsinC=
3
4

(Ⅰ)求角B的大。
(Ⅱ)設(shè)
m
=(cosA,cos2A),
n
=(-2,1),當(dāng)
m
n
取最小值時(shí),判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市為控制大氣PM2.5的濃度,環(huán)境部門規(guī)定:該市每年的大氣主要污染物排放總量不能超過55萬噸,否則將采取緊急限排措施.已知該市2013年的大氣主要污染物排放總量為40萬噸,通過技術(shù)改造和倡導(dǎo)綠色低碳生活等措施,此后每年的原大氣主要污染物排放量比上一年的排放總量減少10%.同時(shí),因經(jīng)濟(jì)發(fā)展和人口增加等因素,每年又新增加大氣主要污染物排放量脅(m>0)萬噸.
(Ⅰ)從2014年起,該市每年大氣主要污染物排放總量(萬噸)依次構(gòu)成數(shù)列{an},求相鄰兩年主要污染物排放總量的關(guān)系式;
(Ⅱ)證明:數(shù)列{an-10m}是等比數(shù)列;
(Ⅲ)若該市始終不需要采取緊急限排措施,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)采取分層抽樣的方法從應(yīng)屆高三學(xué)生中按照性別抽取20名學(xué)生,其中8名女生中有3名報(bào)考理科,男生中有2名報(bào)考文科.
(1)是根據(jù)以上信息,寫出2×2列聯(lián)表
(2)用獨(dú)立性檢驗(yàn)的方法分析,能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為該中學(xué)的高三學(xué)生選報(bào)文理科與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x+
a
x
+b(a>b>0),求f(x)的單調(diào)區(qū)間,并證明f(x)在其單調(diào)區(qū)間上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)y=sin4x+cos4x周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
1+2i
3-i
,i是虛數(shù)單位,則復(fù)數(shù)的虛部是
 

查看答案和解析>>

同步練習(xí)冊答案