【題目】把物體放在冷空氣中冷卻,如果物體原來的溫度是,空氣的溫度是,則1min后物體的溫度可由公式求得,其中k是常數(shù),把溫度是的物體放在15℃的空氣中冷卻,1 min后,物體的溫度是.

1)求出k的值;

2)計(jì)算開始冷卻多久后,上述物體的溫度分別是;

3)判斷上述物體最終能否冷卻到12℃,并說明理由.

【答案】1;(2;(3)不能,理由見解析.

【解析】

1)根據(jù)題意得到代入,解出的值;(2)將的值分別為代入函數(shù)解析式,得到相應(yīng)的的值;(3)將代入函數(shù)解析式,發(fā)現(xiàn)方程無解,從而作出判斷.

1中,

,,

.

2)由(1)可知,

當(dāng)時(shí),,解得.

當(dāng)時(shí),,,解得.

當(dāng)時(shí),,解得.

∴開始冷卻后,上述物體的溫度分別為.

3)將代入,

所以不存在滿足方程的,

所以物體最終不能冷卻到.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某項(xiàng)選拔共有四輪考核,每輪設(shè)有一個(gè)問題,能正確回答問題者進(jìn)入下一輪考核,否則即被淘汰,.已知某選手能正確回答第一、二、三、四輪的問題的概率分別為,,,且各輪問題能否正確回答互不影響.

1)求該選手進(jìn)入第四輪才被淘汰的概率;

2)求該選手至多進(jìn)入第三輪考核的概率;

3)求該選手回答過四個(gè)問題的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)上年度電價(jià)為/),年用電量為.本年度該地政府實(shí)行惠民政策,要求電力部門讓利給用戶,將電價(jià)下調(diào)到/)至/)之間,而用戶的期望電價(jià)為/).經(jīng)測(cè)算,下調(diào)電價(jià)后新增用電量和實(shí)際電價(jià)與用戶的期望電價(jià)的差成反比(比例系數(shù)為).該地區(qū)的電力成本價(jià)為/).

1)寫出本年度電價(jià)下調(diào)后電力部門的收益(單位:元)關(guān)于實(shí)際電價(jià)(單位:元/)的函數(shù)解析式;(收益實(shí)際用電量(實(shí)際電價(jià)成本價(jià)))

2)設(shè),當(dāng)電價(jià)最低定為多少時(shí),可保證電力部門的收益比上年至多減少

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按照《國(guó)務(wù)院關(guān)于印發(fā)十三五節(jié)能減排綜合工作方案的通知》(國(guó)發(fā)[201674號(hào))的要求,到2020年,全國(guó)化學(xué)需氧量排放總量要控制在2001萬噸以內(nèi),要比2015年下降10%假設(shè)十三五期間每一年化學(xué)需氧量排放總量下降的百分比都相等,2015年后第年的化學(xué)需氧量排放總量最大值為萬噸.

1)求的解析式;

2)求2019年全國(guó)化學(xué)需氧量排放總量要控制在多少萬噸以內(nèi)(精確到1萬噸).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的方程的解集中只含有一個(gè)元素,則的取值集合為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),圓的圓心為,半徑為.

(1)設(shè),求過點(diǎn)A且與圓相切的直線方程;

(2)設(shè),直線過點(diǎn)A且被圓截得的弦長(zhǎng)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn)曲線的極坐標(biāo)方程為.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)過點(diǎn)作直線的垂線交曲線兩點(diǎn)(軸上方),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前n項(xiàng)和為,已知).

(1)求證:數(shù)列為等比數(shù)列;

(2)若數(shù)列滿足:

求數(shù)列的通項(xiàng)公式;

是否存在正整數(shù)n,使得成立?若存在,求出所有n的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面積S=5,b=5,求sinBsinC的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案