已知無窮數(shù)列{an}前n項和,則數(shù)列{an}的各項和為   
【答案】分析:若想求數(shù)列的前N項和,則應(yīng)先求數(shù)列的通項公式an,由已知條件,結(jié)合an=Sn-Sn-1可得遞推公式,因為是求無窮遞縮等比數(shù)列的所有項的和,故由公式S=即得
解答:解:由可得:(n≥2),
兩式相減得并化簡:(n≥2),
,
所以無窮數(shù)列{an}是等比數(shù)列,且公比為-,
即無窮數(shù)列{an}為遞縮等比數(shù)列,
所以所有項的和S=
故答案是-1
點評:本題主要借助數(shù)列前N項和與項的關(guān)系,考查了數(shù)列的遞推公式和無窮遞縮等比數(shù)列所有項和公式,并檢測了學(xué)生對求極限知識的掌握,屬于一個比較綜合的問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知無窮數(shù)列{an}前n項和Sn=
13
an-1
,則數(shù)列{an}的各項和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知無窮數(shù)列{an}中a1=1,且滿足從第二項開始每一項與前一項的比值為同一個常數(shù)-
1
2
,則無窮數(shù)列{an}的各項和
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閔行區(qū)一模)已知無窮數(shù)列{an},首項a1=3,其前n項和為Sn,且an+1=(a-1)Sn+2(a≠0,a≠1,n∈N*).若數(shù)列{an}的各項和為-
8
3
a
,則a=
-
1
2
-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•普陀區(qū)二模)已知無窮數(shù)列{an}中,a1,a2,…,am是以10為首項,以-2為公差的等差數(shù)列;am+1,am+2,…,a2m是以
1
2
為首項,以
1
2
為公比的等比數(shù)列(m≥3,m∈N*);并且對一切正整數(shù)n,都有an+2m=an成立.
(1)當(dāng)m=3時,請依次寫出數(shù)列{an}的前12項;
(2)若a23=-2,試求m的值;
(3)設(shè)數(shù)列{an}的前n項和為Sn,問是否存在m的值,使得S128m+3≥2008成立?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知無窮數(shù)列{an}中,a1,a2,…,am構(gòu)成首項為2,公差為-2的等差數(shù)列am+1,am+2,…,a2m,構(gòu)成首項為
1
2
,公比為
1
2
的等比數(shù)列,其中m≥3,m∈N+,
(l)當(dāng)1≤n≤2m,n∈N+,時,求數(shù)列{an}的通項公式;
(2)若對任意的n∈N+,都有an+2m=an成立.
①當(dāng)a27=
1
64
時,求m的值;
②記數(shù)列{an}的前n項和為Sn.判斷是否存在m,使得S4m+1≥2成立?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案