在△ABC中,若b2sin2C+c2sin2B=2bccosBcosC,則△ABC是( 。
A、等邊三角形B、等腰三角形C、直角三角形D、等腰直角三角形
分析:利用正弦定理化簡已知的等式,根據(jù)sinBsinC不為0,在等式兩邊同時除以sinBsinC,移項后再根據(jù)兩角和與差的余弦函數(shù)公式化簡,可得出cos(B+C)=0,根據(jù)B和C都為三角形的內(nèi)角,可得兩角之和為直角,從而判斷出三角形ABC為直角三角形.
解答:解:根據(jù)正弦定理
a
sinA
=
b
sinB
=
c
sinC
=2R,得到a=2RsinA,b=2RsinB,c=2RsinC,
代入已知的等式得:(2RsinB)2sin2C+(2RsinC)2sin2B=8R2sinBsinCcosBcosC,
即sin2Bsin2C+sin2Csin2B=2sinBsinCcosBcosC,又sinBsinC≠0,
∴sinBsinC=cosBcosC,
∴cosBcosC-sinBsinC=cos(B+C)=0,又B和C都為三角形的內(nèi)角,
∴B+C=90°,
則△ABC為直角三角形.
故選C
點評:此題考查了三角形的形狀判斷,涉及的知識有正弦定理,兩角和與差的余弦函數(shù)公式,以及特殊角的三角函數(shù)值,正弦定理解決了邊角的關(guān)系,是本題的突破點,學(xué)生在化簡求值時特別注意角度的范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若b2+c2=a2+bc,則A=( 。
A、30°B、45°C、60°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若b2+c2-a2=-
3
bc
,則A=
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若  b2+c2-a2=bc,則A=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若b2+c2-
2
bc=a2,且
a
b
=
2
,則C等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若b2=ac,c=2a,則cosB等于( 。

查看答案和解析>>

同步練習(xí)冊答案