【題目】選修4﹣4:坐標(biāo)系與參數(shù)方程.
極坐標(biāo)系與直角坐標(biāo)系xoy有相同的長(zhǎng)度單位,以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,已知曲線C1的極坐標(biāo)方程為ρ=4cosθ,曲線C2的參數(shù)方程為 (t為參數(shù),0≤α<π),射線θ=φ,θ=φ+ ,θ=φ﹣ 與曲線C1交于(不包括極點(diǎn)O)三點(diǎn)A、B、C.
(1)求證:|OB|+|OC|= |OA|;
(2)當(dāng)φ= 時(shí),B,C兩點(diǎn)在曲線C2上,求m與α的值.

【答案】
(1)解:依題意,|OA|=4cosφ,|OB|=4cos(φ+ ),|OC|=4cos(φ﹣ ),

則|OB|+|OC|=4cos(φ+ )+4cos(φ﹣ )=2 (cosφ﹣sinφ)+2 (cosφ+sinφ)=4 cosφ,

= |OA|.


(2)解:當(dāng)φ= 時(shí),B,C兩點(diǎn)的極坐標(biāo)分別為(2, ),(2 ,﹣ ).

化為直角坐標(biāo)為B(1, ),C(3,﹣ ).

C2是經(jīng)過點(diǎn)(m,0),傾斜角為α的直線,

又經(jīng)過點(diǎn)B,C的直線方程為y=﹣ (x﹣2),故直線的斜率為﹣

所以m=2,α=


【解析】(1)依題意,|OA|=4cosφ,|OB|=4cos(φ+ ),|OC|=4cos(φ﹣ ),利用三角恒等變換化簡(jiǎn)|OB|+|OC|為4 cosφ,= |OA|,命題得證.(2)當(dāng)φ= 時(shí),B,C兩點(diǎn)的極坐標(biāo)分別為(2, ),(2 ,﹣ ).再把它們化為直角坐標(biāo),根據(jù)C2是經(jīng)過點(diǎn)(m,0),傾斜角為α的直線,又經(jīng)過點(diǎn)B,C的直線方程為y=﹣ (x﹣2),由此可得m及直線的斜率,從而求得α的值.
【考點(diǎn)精析】通過靈活運(yùn)用圓的參數(shù)方程,掌握?qǐng)A的參數(shù)方程可表示為即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)商場(chǎng)經(jīng)銷某種商品,根據(jù)以往資料統(tǒng)計(jì),每位顧客采用的分期付款次數(shù)的分布列為:

1

2

3

4

5

0.4

0.2

0.2

0.1

0.1

商場(chǎng)經(jīng)銷一件該商品,采用1期付款,其利潤(rùn)為200元;采用2期或3期付款,其利潤(rùn)為250元;采用4期或5期付款,其利潤(rùn)為300元.表示經(jīng)銷一件該商品的利潤(rùn).

(1)求購買該商品的3位顧客中,恰有2位采用1期付款的概率;

(2)求的分布列及期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓上

)求橢圓的方程

設(shè)動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),判斷是否存在以原點(diǎn)為圓心的圓,滿足此圓與相交于兩點(diǎn), (兩點(diǎn)均不在坐標(biāo)軸上),且使得直線、的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 已知a5=﹣3,S10=﹣40.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若從數(shù)列{an}中依次取出第2,4,8,…,2n , …項(xiàng),按原來的順序排成一個(gè)新數(shù)列{bn},求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù),若對(duì)任意,總存在,使,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍;

(Ⅱ)證明:當(dāng)時(shí),關(guān)于的不等式上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在上的函數(shù)滿足,且是奇函數(shù),現(xiàn)給出下列4個(gè)結(jié)論:①是周期為4的周期函數(shù);

的圖象關(guān)于點(diǎn)對(duì)稱;

是偶函數(shù);

的圖象經(jīng)過點(diǎn),其中正確結(jié)論的序號(hào)是__________(請(qǐng)?zhí)钌纤姓_的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 =1(a>0,b>0)的左焦點(diǎn)為F,離心率為 .若經(jīng)過F和P(0,4)兩點(diǎn)的直線平行于雙曲線的一條漸近線,則雙曲線的方程為( 。
A.
=1
B.
=1
C.
=1
D.
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的兩個(gè)頂點(diǎn)分別為A(﹣2,0),B(2,0),焦點(diǎn)在x軸上,離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)點(diǎn)D為x軸上一點(diǎn),過D作x軸的垂線交橢圓C于不同的兩點(diǎn)M,N,過D作AM的垂線交BN于點(diǎn)E.求證:△BDE與△BDN的面積之比為4:5.

查看答案和解析>>

同步練習(xí)冊(cè)答案