【題目】給出下列命題:

用反證法證明命題設(shè)a,b,c為實(shí)數(shù),且,,則,時(shí),要給出的假設(shè)是:a,bc都不是正數(shù);

若函數(shù)處取得極大值,則

用數(shù)學(xué)歸納法證明,在驗(yàn)證成立時(shí),不等式的左邊是;

數(shù)列的前n項(xiàng)和,則是數(shù)列為等比數(shù)列的充要條件;

上述命題中,所有正確命題的序號為______

【答案】

【解析】

對每個(gè)命題逐個(gè)分析,判斷它的正確與否.

①假設(shè)是a,bc不都是正數(shù);所以①不正確;

②函數(shù),則,

若在處取得極大值,則時(shí)方程的根,所以,解得,

當(dāng)時(shí),時(shí)時(shí),

所以是極小值點(diǎn),與題意矛盾,所以②不正確;

時(shí),左邊加到,所以③正確;

④由題意,時(shí),,若是等比數(shù)列,則,,即,

所以是必要條件;當(dāng)時(shí),,時(shí),

,是等比數(shù)列,所以是充分條件,所以④正確.

故答案為:③④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對于曲線f(x)=-exx(e為自然對數(shù)的底數(shù))的任意切線l1,總存在曲線g(x)=ax+2cosx的切線l2,使得l1l2,則實(shí)數(shù)a的取值范圍為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖象向右平移個(gè)單位,在向上平移一個(gè)單位,得到g(x)的圖象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],則x1﹣2x2的最大值為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,假命題的是( )

A.一條直線與兩個(gè)平行平面中的一個(gè)相交,則必與另一個(gè)平面相交.

B.平行于同一平面的兩條直線一定平行.

C.如果平面不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面.

D.若直線不平行于平面,且不在平面內(nèi),則在平面內(nèi)不存在與平行的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線.

(1)若直線經(jīng)過拋物線的焦點(diǎn),求拋物線的準(zhǔn)線方程;

(2)若斜率為-1的直線經(jīng)過拋物線的焦點(diǎn),且與拋物線交于,兩點(diǎn),當(dāng)時(shí),求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),橢圓的左、右焦點(diǎn)分別為,.過焦點(diǎn)且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)是否存在直線與橢圓相交于兩點(diǎn),使得?若存在,求的取值范圍;若不存在,請說明理由!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,底面是邊長為4的正三角形,底面,點(diǎn)分別為的中點(diǎn),且異面直線所成的角的大小為.

(1)求證:平面平面

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)有兩個(gè)零點(diǎn)

(Ⅰ)求實(shí)數(shù)的取值范圍;

(Ⅱ)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在年的自主招生考試成績中隨機(jī)抽取名學(xué)生的筆試成績,按成績分組:第,第,第,第,第得到的頻率分布直方圖如圖所示

分別求第組的頻率;

若該校決定在第組中用分層抽樣的方法抽取名學(xué)生進(jìn)入第二輪面試,

已知學(xué)生甲和學(xué)生乙的成績均在第組,求學(xué)生甲和學(xué)生乙同時(shí)進(jìn)入第二輪面試的概率;

根據(jù)直方圖試估計(jì)這名學(xué)生成績的平均分.(同一組中的數(shù)據(jù)用改組區(qū)間的中間值代表)

查看答案和解析>>

同步練習(xí)冊答案