【題目】如圖,△ABC是邊長(zhǎng)為4的等邊三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,且EC⊥平面ABC,EC=2.
(1)證明:DE∥平面ABC;
(2)證明:AD⊥BE.

【答案】證明:(1)取AB的中點(diǎn)F,連接DF,CF,
∵△ABC是邊長(zhǎng)為4的等邊三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,
∴DF⊥CF,
∵DF=BC=2
又∵EC⊥平面ABC,既有:EC⊥FC,EC=2.
∴DFEC,故四邊形DEFC為平行四邊形,
∴DE∥FC
∴DE平面ABC,可得DE∥平面ABC.
(2)以FA,F(xiàn)C,F(xiàn)D為x,y,z軸的正方向建立直角坐標(biāo)系,
則有:A(2,0,0),D(0,0,2),B(﹣2,0,0),E(0,2,2)
=(﹣2,0,2),=(﹣2,2,2)
由于=0,
故AD⊥BE.

【解析】(1)取AB的中點(diǎn)F,連接DF,CF,由已知可證DFEC,可得四邊形DEFC為平行四邊形,可得DE∥FC,由DE平面ABC,從而可證DE∥平面ABC.
(2)以FA,F(xiàn)C,F(xiàn)D為x,y,z軸的正方向建立直角坐標(biāo)系,求出向量 , 的坐標(biāo),由=0,即可證明AD⊥BE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),kR.

(I)求函數(shù)f(x)的單調(diào)區(qū)間;

(II)當(dāng)k>0時(shí),若函數(shù)f(x)在區(qū)間(1,2)內(nèi)單調(diào)遞減,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC面積S和三邊a,b,c滿足:S=a2﹣(b﹣c)2 , b+c=8,則△ABC面積S的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣1|+|x﹣3|
(Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)若不等式f(x)≤a(x+)的解集非空,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐S ABCD中,平面SAD⊥平面ABCD.四邊形ABCD為正方形,

(1)求證:CD⊥平面SAD.

(2)若SA=SD,點(diǎn)M為BC的中點(diǎn),在棱SC上是否存在點(diǎn)N,使得平面DMN⊥平面ABCD?若存在,請(qǐng)說(shuō)明其位置,并加以證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex·(a++lnx),其中aR.

(I)若曲線y=f(x)在x=1處的切線與直線y=-垂直,求a的值;

(II)當(dāng)a(0,ln2)時(shí),證明:f(x)存在極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種樹苗栽種時(shí)高度為A(A為常數(shù))米,栽種n年后的高度記為f(n).經(jīng)研究發(fā)現(xiàn)f(n)近似地滿足 f(n),其中,a,b為常數(shù),n∈N,f(0)A.已知栽種3年后該樹木的高度為栽種時(shí)高度的3倍.

1)栽種多少年后,該樹木的高度是栽種時(shí)高度的8倍;

2)該樹木在栽種后哪一年的增長(zhǎng)高度最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市A,B兩所中學(xué)的學(xué)生組隊(duì)參加辯論賽,A中學(xué)推薦3名男生,2名女生,B中學(xué)推薦了3名男生,4名女生,兩校推薦的學(xué)生一起參加集訓(xùn),由于集訓(xùn)后隊(duì)員的水平相當(dāng),從參加集訓(xùn)的男生中隨機(jī)抽取3人,女生中隨機(jī)抽取3人組成代表隊(duì)

1求A中學(xué)至少有1名學(xué)生入選代表隊(duì)的概率.

2某場(chǎng)比賽前,從代表隊(duì)的6名隊(duì)員中隨機(jī)抽取4人參賽,設(shè)X表示參賽的男生人數(shù),求X得分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐中,底面ABCD是正方形,AC與BD交于點(diǎn)O,底面ABCD,F(xiàn)為BE的中點(diǎn),

(1)求證:平面ACF

(2)求BE與平面ACE的所成角的正切值;

(3)在線段EO上是否存在點(diǎn)G,使CG平面BDE ?若存在,求出EG:EO的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案