已知雙曲線的中心為原點(diǎn),的焦點(diǎn),過(guò)的直線相交于兩點(diǎn),且的中點(diǎn)為,則的方程為(  )
A.B.C.D.
B  

試題分析:由已知條件易得直線l的斜率為k=kFN=1,
設(shè)雙曲線方程為,A(x1,y1),B(x2,y2),
則有,
兩式相減并結(jié)合x1+x2=-24,y1+y2=-30得,,從而=1
即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故選B.
點(diǎn)評(píng):中檔題,涉及弦中點(diǎn)問(wèn)題,往往可以利用“點(diǎn)差法”,得到斜率的表達(dá)式。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的左右焦點(diǎn)分別為、,由4個(gè)點(diǎn)、組成一個(gè)高為,面積為的等腰梯形.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線和橢圓交于兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)拋物線焦點(diǎn)的直線交拋物線于A、B兩點(diǎn),則的最小值為
A.            B.           C.         D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線+=1.(m<6) 與+=1.(5<m<9)的(   )
A.準(zhǔn)線相同B.離心率相同C.焦點(diǎn)相同D.焦距相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)是雙曲線的左焦點(diǎn),點(diǎn)是該雙曲線的右頂點(diǎn),過(guò)且垂直于軸的直線與雙曲線交于、兩點(diǎn),若是銳角三角形,則該雙曲線的離心率的取值范圍是(   ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,點(diǎn)A、BC在數(shù)軸上,點(diǎn)B、C關(guān)于點(diǎn)A對(duì)稱,若點(diǎn)A、B對(duì)應(yīng)的實(shí)數(shù)分別是和-1,則點(diǎn)C所對(duì)應(yīng)的實(shí)數(shù)是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓上的一點(diǎn)到橢圓一個(gè)焦點(diǎn)的距離為,則到另一焦點(diǎn)距離為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知A(,),B(,)是函數(shù)的圖象上的任意兩點(diǎn)(可以重合),點(diǎn)M在直線上,且.
(1)求+的值及+的值
(2)已知,當(dāng)時(shí),+++,求
(3)在(2)的條件下,設(shè)=為數(shù)列{}的前項(xiàng)和,若存在正整數(shù),
使得不等式成立,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓
C:(a>b>0)的左、右焦點(diǎn),直線:x=-將線段F1F2分成兩段,其長(zhǎng)度之比為1 : 3.設(shè)A,B是C上的兩個(gè)動(dòng)點(diǎn),線段AB的中點(diǎn)M在直線l上,線段AB的中垂線與C交于P,Q兩點(diǎn).

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點(diǎn)M,使以PQ為直徑的圓經(jīng)過(guò)點(diǎn)F2,若存在,求出M點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案