【題目】已知橢圓的離心率為,且以原點為圓心,橢圓的焦距為直徑的圓與直線相切(為常數(shù)).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,若橢圓的左、右焦點分別為,過作直線與橢圓分別交于兩點,求的取值范圍.
【答案】(1)(2)
【解析】試題分析:(1)由橢圓離心率為,以原點為圓心,橢圓的焦距為直徑與直線相切,列出方程組求出的值,由此能求出橢圓的方程;
(2)當(dāng)直線的斜率不存在時,推導(dǎo)出 ,當(dāng)直線的斜率存在時,設(shè)直線的方程為,聯(lián)立方程組,利用韋達定理、向量的知識,結(jié)合題意,即可求解的取值范圍.
試題解析:
(1)由題意
故橢圓.
(2)①若直線斜率不存在,則可得軸,方程為,
,故.
②若直線斜率存在,設(shè)直線的方程為,
由消去得,
設(shè),則.
,
則
代入韋達定理可得
由可得,結(jié)合當(dāng)不存在時的情況,得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足an+1=a ﹣nan+1,且a1=2.
(1)計算a2 , a3 , a4的值,由此猜想數(shù)列{an}的通項公式,并用數(shù)學(xué)歸納法證明;
(2)求證:2nn≤a <3nn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=( + )x3(a>0,a≠1).
(1)討論函數(shù)f(x)的奇偶性;
(2)求a的取值范圍,使f(x)+f(2x)>0在其定義域上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為函數(shù)圖像的一部分,其中點是圖像的一個最高點,點是與點相鄰的圖像與軸的一個交點.
⑴ 求函數(shù)的解析式;
⑵ 若將函數(shù)的圖像沿軸向右平移個單位,再把所得圖像上每一點的橫坐標(biāo)都變?yōu)樵瓉淼?/span>(縱坐標(biāo)不變),得到函數(shù)的圖像,求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,游樂場中摩天輪勻速逆時針旋轉(zhuǎn),每轉(zhuǎn)一圈需要6min,其中心距離地面40.5m,摩天輪的半徑為40m,已知摩天輪上點P的起始位置在最低點處,在時刻t(min)時點P距離地面的高度為f(t)=Asin(wt+φ)+h(A>0,w>0,﹣π<φ<0,t≥0).
(1)求f(t)的單調(diào)區(qū)間;
(2)求證:f(t)+f(t+2)+f(t+4)是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1中,M、N分別為棱C1D1、C1C的中點,有以下四個結(jié)論: ①直線AM與CC1是相交直線;
②直線AM與BN是平行直線;
③直線BN與MB1是異面直線;
④直線AM與DD1是異面直線.
其中正確的結(jié)論為(注:把你認為正確的結(jié)論的序號都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,A(1,1)、B(7,3)、D(4,6),點M是線段AB的中點線段CM與BD交于點P.
(1)求直線CM的方程;
(2)求點P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2013年第三季度,國家電網(wǎng)決定對城鎮(zhèn)居民用電計費標(biāo)準(zhǔn)作出調(diào)整,并根據(jù)用電情況將居民分為三類:第一類的用電區(qū)間在(0,170],第二類在(170,260],第三類在(260,+∞)(單位:千瓦時).某小區(qū)共有1000戶居民,現(xiàn)對他們的用電情況進行調(diào)查,得到頻率分布直方圖,如圖所示.
(1)求該小區(qū)居民用電量的中位數(shù)與平均數(shù);
(2)本月份該小區(qū)沒有第三類的用電戶出現(xiàn),為鼓勵居民節(jié)約用電,供電部門決定:對第一類每戶獎勵20元錢,第二類每戶獎勵5元錢,求每戶居民獲得獎勵的平均值;
(3)利用分層抽樣的方法從該小區(qū)內(nèi)選出5位居民代表,若從該5戶居民代表中任選兩戶居民,求這兩戶居民用電資費屬于不同類型的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校某研究性學(xué)習(xí)小組在對學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)y與聽課時間x(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)x∈(0,12]時,圖象是二次函數(shù)圖象的一部分,其中頂點A(10,80),過點B(12,78);當(dāng)x∈[12,40]時,圖象是線段BC,其中C(40,50).根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時,學(xué)習(xí)效果最佳.
(1)試求y=f(x)的函數(shù)關(guān)系式;
(2)教師在什么時段內(nèi)安排內(nèi)核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com