【題目】已知a∈R,若 在區(qū)間(0,1)上只有一個極值點,則a的取值范圍為 .
【答案】a>0
【解析】解:∵f(x)=(x+ )ex , ∴f′(x)=( )ex ,
設h(x)=x3+x2+ax﹣a,
∴h′(x)=3x2+2x+a,
a>0,h′(x)>0在(0,1)上恒成立,即函數(shù)h(x)在(0,1)上為增函數(shù),
∵h(0)=﹣a<0,h(1)=2>0,
∴h(x)在(0,1)上有且只有一個零點x0 , 使得f′(x0)=0,
且在(0,x0)上,f′(x)<0,在(x0 , 1)上,f′(x)>0,
∴x0為函數(shù)f(x)在(0,1)上唯一的極小值點;
a=0時,x∈(0,1),h′(x)=3x2+2x>0成立,函數(shù)h(x)在(0,1)上為增函數(shù),
此時h(0)=0,∴h(x)>0在(0,1)上恒成立,
即f′(x)>0,函數(shù)f(x)在(0,1)上為單調(diào)增函數(shù),函數(shù)f(x)在(0,1)上無極值;
a<0時,h(x)=x3+x2+a(x﹣1),
∵x∈(0,1),∴h(x)>0在(0,1)上恒成立,
即f′(x)>0,函數(shù)f(x)在(0,1)上為單調(diào)增函數(shù),函數(shù)f(x)在(0,1)上無極值.
綜上所述,a>0,所以答案是:a>0.
【考點精析】解答此題的關鍵在于理解函數(shù)的極值與導數(shù)的相關知識,掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知長方形ABCD中,AB=2 ,AD= ,M為DC的中點,將△ADM沿AM折起,使得平面ADM⊥平面ABCM (Ⅰ)求證:AD⊥BM
(Ⅱ)若點E是線段DB上的一動點,問點E在何位置時,二面角E﹣AM﹣D的余弦值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】閱讀如圖所示的程序框圖,若輸出的數(shù)據(jù)為58,則判斷框中應填入的條件為( )
A.k≤3
B.k≤4
C.k≤5
D.k≤6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平面ABCD⊥平面ABEF,四邊形ABCD是正方形,四邊形ABEF是矩形,且AF= AD=a,G是EF的中點,則GB與平面AGC所成角的正弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知隧道的截面是半徑為4.0 m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7 m,高為3 m的貨車能不能駛?cè)脒@個隧道?假設貨車的最大寬度為a m,那么要正常駛?cè)朐撍淼溃涇嚨南薷邽槎嗌伲?/span>
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】到直線3x-4y+1=0的距離為3,且與此直線平行的直線方程是 ( )
A.3x-4y+4=0
B.3x-4y+4=0或3x-4y-2=0
C.3x-4y+16=0
D.3x-4y+16=0或3x-4y-14=0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列函數(shù)中,最小正周期為π且為奇函數(shù)的是( )
A.y=sin
B.y=cos
C.y=cos2x
D.y=sin2x
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com