已知函數(shù),且任意的

(1)求、、的值;
(2)試猜想的解析式,并用數(shù)學歸納法給出證明.

(1)(2)

解析試題分析:(1)

                                     4分(2)猜想:                                                  6分
用數(shù)學歸納法證明如下:
①當n=1時,,∴猜想正確;                                         7分
②假設當
那么當
所以,當時,猜想正確;
由①②知,對正確.                                                13分
考點:本小題主要考查歸納推理和數(shù)學歸納法的應用.
點評:應用數(shù)學歸納法解決問題時,要注意從n=k到n=k+1推導時,一定要用上歸納假設.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

是定義在上的函數(shù),當,且時,有
(1)證明是奇函數(shù);
(2)當時,(a為實數(shù)). 則當時,求的解析式;
(3)在(2)的條件下,當時,試判斷上的單調性,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若,,求證:;
(2)若實數(shù)滿足.試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
(1)求函數(shù)的最小正周期;
(2)若,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為奇函數(shù),且在處取得極大值2.
(Ⅰ)求的解析式;
(Ⅱ)過點(可作函數(shù)圖像的三條切線,求實數(shù)的取值范圍;
(Ⅲ)若對于任意的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
(1)求在點處的切線方程;
(2)求在區(qū)間的最大值與最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)作出函數(shù)的圖像,并根據(jù)圖像寫出函數(shù)的單調區(qū)間;以及在各單調區(qū)間上的增減性.
(Ⅱ)求函數(shù)時的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),曲線在點M處的切線恰好與直線垂直。
(1)求實數(shù)的值;
(2)若函數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(I)求x為何值時,上取得最大值;
(II)設是單調遞增函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習冊答案