【題目】已知正四棱錐的底面邊長和高都為2.現(xiàn)從該棱錐的5個頂點中隨機選取3個點構成三角形,設隨機變量表示所得三角形的面積.

(1)求概率的值;

(2)求隨機變量的概率分布及其數(shù)學期望.

【答案】(1)(2)見解析

【解析】

1)由題意,分別得出“從5個頂點中隨機選取3個點構成三角形”和“”所包含的基本事件個數(shù),基本事件個數(shù)比即為所求概率;

2)先由題意得到的可能取值,求出對應的概率,進而可得到分布列,求出期望.

解:(1)從5個頂點中隨機選取3個點構成三角形,

共有種取法.其中的三角形如,

這類三角形共有個.

因此.

(2)由題意,的可能取值為,2,.

其中的三角形是側面,這類三角形共有4個;

其中的三角形有兩個,.

因此,.

所以隨機變量的概率分布列為:

2

所求數(shù)學期望

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了促進我國人口均衡發(fā)展,從201611日起,全國統(tǒng)一實施全面放開二孩政策,這也是為了重建大國人口觀,重新認識人口價值、人口規(guī)律、人口問題,某研究機構為了了解人們對全面放開生育二孩政策的態(tài)度,隨機調查了200人,得到的統(tǒng)計數(shù)據如下面的不完整的2×2列聯(lián)表所示(單位:人):

支持生育二孩

不支持生育二孩

合計

男性

30

女性

60

100

合計

70

(1)完成2×2列聯(lián)表,并求是否有90%的把握認為是否支持生育二孩與性別有關?

(2)現(xiàn)從樣本中的女性中利用分層抽樣的方法抽取5人,再從這5人中隨機選出2人進行深層次的交流,求選出的2人中至少有1支持生育二孩的概率.

參考公式:,其中.

參考數(shù)據:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知O為坐標原點,,直線AGBG相交于點G,且它們的斜率之積為.記點G的軌跡為曲線C.

1)若射線與曲線C交于點D,且E為曲線C的最高點,證明:.

2)直線與曲線C交于MN兩點,直線AM,ANy軸分別交于P,Q兩點.試問在x軸上是否存在定點T,使得以PQ為直徑的圓恒過點T?若存在,求出T的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某校冬季長跑活動中,學校要給獲得一、二等獎的學生購買獎品,要求花費總額不得超過.已知一等獎和二等獎獎品的單價分別為元、元,一等獎人數(shù)與二等獎人數(shù)的比值不得高于,且獲得一等獎的人數(shù)不能少于人,那么下列說法中錯誤的是(

A.最多可以購買份一等獎獎品

B.最多可以購買份二等獎獎品

C.購買獎品至少要花費

D.共有種不同的購買獎品方案

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為迎接“五一國際勞動節(jié)”,某商場規(guī)定購買超過6000元商品的顧客可以參與抽獎活動現(xiàn)有甲品牌和乙品牌的掃地機器人作為獎品,從這兩種品牌的掃地機器人中各隨機抽取6臺檢測它們充滿電后的工作時長相關數(shù)據見下表(工作時長單位:分)

機器序號

1

2

3

4

5

6

甲品牌工作時長/

220

180

210

220

200

230

乙品牌工作時長/

200

190

240

230

220

210

1)根據所提供的數(shù)據,計算抽取的甲品牌的掃地機器人充滿電后工作時長的平均數(shù)與方差;

2)從乙品牌被抽取的6臺掃地機器人中隨機抽出3臺掃地機器人,記抽出的掃地機器人充滿電后工作時長不低于220分鐘的臺數(shù)為,求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某外國語學校舉行的(高中生數(shù)學建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績分布在,分數(shù)在以上(含)的同學獲獎.按女生、男生用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.

(Ⅰ)求的值,并計算所抽取樣本的平均值(同一組中的數(shù)據用該組區(qū)間的中點值作代表);

(Ⅱ)填寫下面的列聯(lián)表,并判斷在犯錯誤的概率不超過的前提下能否認為“獲獎與女生、男生有關”.

女生

男生

總計

獲獎

不獲獎

總計

附表及公式:

其中,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了豐富學生的課外文化生活,某中學積極探索開展課外文體活動的新途徑及新形式,取得了良好的效果.為了調查學生的學習積極性與參加文體活動是否有關,學校對200名學生做了問卷調查,列聯(lián)表如下:

參加文體活動

不參加文體活動

合計

學習積極性高

80

學習積極性不高

60

合計

200

已知在全部200人中隨機抽取1人,抽到學習積極性不高的學生的概率為.

1)請將上面的列聯(lián)表補充完整;

2)是否有99.9%的把握認為學習積極性高與參加文體活動有關?請說明你的理由;

3)若從不參加文體活動的同學中按照分層抽樣的方法選取5人,再從所選出的5人中隨機選取2人,求至少有1人學習積極性不高的概率.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,四邊形是邊長為2的菱形,

1)證明:平面平面;

2)當平面與平面所成銳二面角的余弦值,求直線與平面所成角正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線的焦點為,直線與拋物線交于兩點.

1)若過點,且,求的斜率;

2)若,且的斜率為,當時,求軸上的截距的取值范圍(用表示),并證明的平分線始終與軸平行.

查看答案和解析>>

同步練習冊答案