設過雙曲線x2-y2=9左焦點F1的直線交雙曲線的左支于點P,Q,F2為雙曲線的右焦點.若|PQ|=7,則△F2PQ的周長為(  )
A.19B.26C.43D.50
B
如圖,由雙曲線的定義可得:


兩式相加得|PF2|+|QF2|-|PQ|=4a,
∴△F2PQ的周長為|PF2|+|QF2|+|PQ|=4a+|PQ|+|PQ|=4×3+2×7=26.
故選B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

若雙曲線=1(a>0,b>0)的左、右焦點分別為F1、F2,線段F1F2被拋物線y2=2bx的焦點分成7∶3的兩段,則此雙曲線的離心率為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若原點和點分別是雙曲線的中心和左焦點,點為雙曲線右支上的任意一點,則的取值范圍為 (     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,已知圓P在x軸上截得線段長為2,在y軸上截得線段長為2.
(1)求圓心P的軌跡方程;
(2)若P點到直線y=x的距離為,求圓P的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線-=1的右焦點與拋物線y2=12x的焦點重合,則該雙曲線的焦點到其漸近線的距離等
于(  )
A.B.4C.3D.5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線-=1(a>0,b>0)的離心率為,則雙曲線的漸近線方程為(  )
A.y=±xB.y=±x
C.y=±2xD.y=±x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線C的方程為-=1(a>0,b>0),離心率e=,頂點到漸近線的距離為.

(1)求雙曲線C的方程;
(2)如圖,P是雙曲線C上一點,A、B兩點在雙曲線C的兩條漸近線上,且分別位于第一、二象限.若,λ∈.求△AOB的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列曲線中離心率為的是(  )
A.-=1B.-=1
C.-=1D.-=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線-=1的右焦點的坐標為(,0),則該雙曲線的漸近線方程為_______.

查看答案和解析>>

同步練習冊答案