【題目】已知圓的圓心在軸的負(fù)半軸上,半徑長是5,且過點(diǎn).
(1)求圓的方程;
(2)若直線與圓交于A,B兩點(diǎn),且,求直線的方程.
【答案】(1).(2)或
【解析】
(1)因?yàn)閳A的圓心在軸的負(fù)半軸上,半徑長是5,且過點(diǎn),設(shè)圓心為:,可得,將代入,即可求得答案;
(2)直線與圓交于,兩點(diǎn),點(diǎn)作,根據(jù)題意畫出草圖,數(shù)形結(jié)合求得:,根據(jù)點(diǎn)到直線距離公式,即可求得值,即可求得答案.
(1)圓的圓心在軸的負(fù)半軸上,半徑長是5,且過點(diǎn)
設(shè)圓心為:
可得:
將代入可得:
解得:或(舍)
圓的方程:
(2)直線與圓交于,兩點(diǎn)
點(diǎn)作
根據(jù)題意畫出草圖,如圖:
在中,根據(jù)勾股定理可得:
圓的圓心導(dǎo)到直線距離為:
直線的一般方程為:
根據(jù)點(diǎn)到直線距離公式:
整理可得:,即
解得:,
故直線方程為:或
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中學(xué)生研學(xué)旅行是通過集體旅行、集中食宿方式開展的研究性學(xué)習(xí)和旅行體驗(yàn)相結(jié)合的校外教育活動,是學(xué)校教育和校外教育銜接的創(chuàng)新形式,是綜合實(shí)踐育人的有效途徑.每年暑期都會有大量中學(xué)生參加研學(xué)旅行活動.為了解某地區(qū)中學(xué)生暑期研學(xué)旅行支出情況,在該地區(qū)各個中學(xué)隨機(jī)抽取了部分中學(xué)生進(jìn)行問卷調(diào)查,從中統(tǒng)計得到中學(xué)生暑期研學(xué)旅行支出(單位:百元)頻率分布直方圖如圖所示.
(1)利用分層抽樣在,,三組中抽取5人,應(yīng)從這三組中各抽取幾人?
(2)從(1)抽取的5人中隨機(jī)選出2人,對其消費(fèi)情況進(jìn)行進(jìn)一步分析,求這2人不在同一組的概率;
(3)假設(shè)同組中的每個數(shù)據(jù)都用該區(qū)間的左端點(diǎn)值代替,估計該地區(qū)中學(xué)生暑期研學(xué)旅行支出的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, .
(1)當(dāng)n=1,2,3時,分別比較f(n)與g(n)的大。ㄖ苯咏o出結(jié)論);
(2)由(1)猜想f(n)與g(n)的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知常數(shù),函數(shù).
(1)討論函數(shù)在區(qū)間上的單調(diào)性;
(2)若存在兩個極值點(diǎn),且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)且x,.
(1)判斷的奇偶性,并用定義證明;
(2)若不等式在上恒成立,試求實(shí)數(shù)a的取值范圍;
(3)的值域?yàn)?/span>函數(shù)在上的最大值為M,最小值為m,若成立,求正數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某觀光海域AB段的長度為3百公里,一超級快艇在AB段航行,經(jīng)過多次試驗(yàn)得到其每小時航行費(fèi)用Q(單位:萬元)與速度v(單位:百公里/小時)(0≤v≤3)的以下數(shù)據(jù):
0 | 1 | 2 | 3 | |
0 | 0.7 | 1.6 | 3.3 |
為描述該超級快艇每小時航行費(fèi)用Q與速度v的關(guān)系,現(xiàn)有以下三種函數(shù)模型供選擇:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b.
(1)試從中確定最符合實(shí)際的函數(shù)模型,并求出相應(yīng)的函數(shù)解析式;
(2)該超級快艇應(yīng)以多大速度航行才能使AB段的航行費(fèi)用最少?并求出最少航行費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù),
(1)若函數(shù)為奇函數(shù),求m的值;
(2)若函數(shù)在上是增函數(shù),求實(shí)數(shù)m的取值范圍;
(3)若函數(shù)在上的最小值為,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,過的直線交橢圓、兩點(diǎn),若的最大值為5,則b的值為( )
A. 1 B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,且投資1萬元時的收益為萬元,投資股票等風(fēng)險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,且投資1萬元時的收益為0.5萬元,
(1)分別寫出兩種產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎樣分配資金能使投資獲得最大收益,其最大收益為多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com