定義域為R的函數(shù)f(x)=
1(x=1)
1
|x-1|
(x≠1)
,若關(guān)于x的函數(shù)h(x)=f2(x)+bf(x)+
1
2
有5個不同的零點x1,x2,x3,x4,x5,求x12+x22+x32+x42+x52的值.
考點:函數(shù)與方程的綜合運用,數(shù)列的求和
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)函數(shù)f(x)=
1(x=1)
1
|x-1|
(x≠1)
的表達式可對x分x=1與x≠1討論,由方程f2(x)+bf(x)+
1
2
=0分別求得x1、x2、x3、x4、x5,從而可求得則x12+x22+x32+x42+x52的值.
解答: 解:①若x=1,f(x)=1,故12+b+
1
2
=0,b=-
3
2

②若x≠1,f(x)=
1
|1-x|
,方程f2(x)+bf(x)+
1
2
=0可化為:(
1
|1-x|
2-
3
2
1
|1-x|
+
1
2
=0,
即(
1
|1-x|
-1)•(2•
1
|1-x|
-1)=0,
1
|1-x|
=1或
1
|1-x|
=
1
2
,
1
|1-x|
=1得:x=0或x=2;解
1
|1-x|
=
1
2
得:x=-1或x=3;
∴x12+x22+x32+x42+x52=12+02+22+(-1)2+32=15.
∴x12+x22+x32+x42+x52=15
點評:本題考查函數(shù)與方程的綜合應用,根的存在性及根的個數(shù)判斷,關(guān)鍵是通過對x分x=1與x≠1討論,由方程f2(x)+bf(x)+
1
2
=0分別求得x1、x2、x3、x4、x5
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知集合A={x|-1≤x≤3},集合B={x|m-2≤x≤m+2}.
(1)若B⊆A,求m值;
(2)若A⊆∁RB,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1
2
(ax+a-x)(a>0,a≠1)的圖象經(jīng)過點(2,
41
9
).
(1)求函數(shù)f(x)的解析式; 
(2)若函數(shù)f(x)的值域為[1,
5
3
],試確定x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
4
+
y2
3
=1的長軸為線段AB,點M是橢圓上不同于A,B的任意一點,
(1)設(shè)直線MA,MB的斜率分別為k1,k2,求證:k1k2為定值;
(2)若直線MA,MB與直線x=3分別相交于C,D兩點,求證:以CD為直徑的圓過定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5},若∁RB?A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)含有三個實數(shù)的集合可表示為{a,a+b,a+2b},也可表示為{a,aq,aq2},其中a,b,q∈R,求常數(shù)項q.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.
(1)若A⊆B,求a;
(2)若B⊆A,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x≤7},集合B={x|x<2},集合C={x|x>5},求A∩(B∩C).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,作斜率為-
1
4
的直線l與拋物線D:2y2=x相交于不同的兩點B、C,點A(2,1)在直線l的右上方.
(1)求證:△ABC的內(nèi)心在直線x=2上;
(2)若∠BAC=90°,求△ABC內(nèi)切圓的半徑.

查看答案和解析>>

同步練習冊答案