【題目】已知橢圓C的中心在原點,焦點在x軸上,以兩個焦點和短軸的兩個端點為頂點的四邊形是一個面積為8的正方形(記為Q).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點P是直線x=﹣4與x軸的交點,過點P的直線l與橢圓C相交于M,N兩點,當(dāng)線段MN的中點落在正方形Q內(nèi)(包括邊界)時,求直線l斜率的取值范圍.
【答案】
【解析】試題分析:(I)設(shè)出橢圓的方程,根據(jù)正方形的面積求出橢圓中參數(shù)a的值且判斷出參數(shù)b,c的關(guān)系,根據(jù)橢圓的三個參數(shù)的關(guān)系求出b,c的值得到橢圓的方程.
(II)設(shè)出直線的方程,將直線的方程與橢圓方程聯(lián)立,利用二次方程的韋達定理得到弦中點的坐標,根據(jù)中點在正方形的內(nèi)部,得到中點的坐標滿足的不等關(guān)系,求出k的范圍.
解:(Ⅰ)依題意,設(shè)橢圓C的方程為,焦距為2c,
由題設(shè)條件知,a2=8,b=c
所以=4,
故橢圓的方程為;
(II)橢圓C的左準線方程為x=﹣4,所以點P的坐標為(﹣4,0)
顯然直線l的斜率存在,所以設(shè)直線l的方程為y=k(x+4)
設(shè)點M,N的坐標分別為(x1,y1),(x2,y2),線段MN的中點為G(x0,y0)
由直線代入橢圓方程得(1+2k2)x2+16k2x+32k2﹣8=0.①
由△=(16k2)2﹣4(1+2k2)(32k2﹣8)>0解得﹣<k<.②
因為x1,x2是方程①的兩根,
所以x1+x2=﹣,于是x0==﹣,y0=.
因為x0==﹣≤0,所以點G不可能在y軸的右邊,
又直線F1B2,F1B1方程分別為y=x+2,y=﹣x﹣2
所以點G在正方形Q內(nèi)(包括邊界)的充要條件為,即
解得,此時②也成立.
故直線l斜率的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某食品廠生產(chǎn)的面包中抽取個,測量這些面包的一項質(zhì)量指標值,由測量結(jié)果得如下頻數(shù)分布表:
質(zhì)量指標值分組 | |||||
頻數(shù) |
(1)在相應(yīng)位置上作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估計這種面包質(zhì)量指標值的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該食品廠生產(chǎn)的這種面包符合“質(zhì)量指標值不低于的面包至少要占全部面包的規(guī)定?”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD-A1B1C1D1中,M、N分別是AB、BC的中點.
(1)求證:MN∥平面A1B1C1D1
(2)求證:平面B1MN⊥平面BB1D1D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%.
①當(dāng)x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;
②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—5;不等式選講.
已知函數(shù).
(1)若的解集非空,求實數(shù)的取值范圍;
(2)若正數(shù)滿足, 為(1)中m可取到的最大值,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明跟父母、爺爺奶奶一同參加《中國詩詞大會》的現(xiàn)場錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數(shù)為
A. 60 B. 72 C. 84 D. 96
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線過點,直線過點與拋物線交于, 兩點.點關(guān)于軸的對稱點為,連接.
(1)求拋物線線的標準方程;
(2)問直線是否過定點?若是,求出定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017安徽蚌埠一模)已知橢圓C:=1(a>b>0)的離心率為,F1,F2是橢圓的兩個焦點,P是橢圓上任意一點,且△PF1F2的周長是8+2.
(1)求橢圓C的方程;
(2)設(shè)圓T:(x-2)2+y2=,過橢圓的上頂點M作圓T的兩條切線交橢圓于E,F兩點,求直線EF的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com