【題目】如圖,在四棱錐中,側面底面,為正三角形,,,點,分別為線段、的中點,分別為線段、上一點,且,.

(1)確定點的位置,使得平面;

(2)試問:直線上是否存在一點,使得平面與平面所成銳二面角的大小為,若存在,求的長;若不存在,請說明理由.

【答案】1)詳見解析;(2存在點,且.

【解析】試題分析:

試題解析:

解:(1)為線段的靠近的三等分點.

在線段上取一點,使得,因為,∴,

因為中點,∴,

為線段靠近的三等分點時,即,,又易知,∴.

,所以平面平面,因為平面,所以平面.

(2)取中點,連接,因為為正三角形,所以,又側面底面,

所以底面

軸,的中垂線為軸,軸,建立空間直角坐標系,如圖所示,則

,,設,

,

設平面的法向量為

,

,

,得平面的一個法向量為.

易得平面的一個法向量為,

所以,

解得,故存在點,且.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C 的左焦點F為圓的圓心,且橢圓C上的點到點F的距離最小值為。

I)求橢圓C的方程;

II)已知經(jīng)過點F的動直線與橢圓C交于不同的兩點A、B,點M坐標為),證明: 為定值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017蘭州高考模擬.在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=

(1)求證:平面EBC⊥平面EBD;

(2)設M為線段EC上一點,且3EM=EC,試問在線段BC上是否存在一點T,使得MT∥平面BDE,若存在,試指出點T的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“開門大吉”是中央電視臺推出的娛樂節(jié)目.選手面對1~8號8扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌

的名字,方可獲得該扇門對應的家庭夢想基金.在一次場外調查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個年齡段:20~30;30~40(單位:歲),其猜對歌曲名稱與否的人數(shù)如圖所示.

(1) 完成下列2×2列聯(lián)表(見答題紙);

(2)判斷是否有90%的把握認為猜對歌曲名稱與否和年齡有關;說明你的理由.(下面的臨界值表供參考)

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

(參考公式: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|x2-3x+2≤0},集合B={y|y=x2-2x+a},集合C={x|x2-ax-4≤0}.命題p:A∩B≠;命題q:AC.

(1)若命題p為假命題,求實數(shù)a的取值范圍;

(2)若命題p∧q為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各式: 

(1);

(2)已知,則;

(3)函數(shù)的圖象與函數(shù)的圖象關于y軸對稱;

(4)函數(shù)的定義域是R,則m的取值范圍是;

(5)函數(shù)的遞增區(qū)間為.

正確的______________________.(把你認為正確的序號全部寫上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究某學科成績(滿分100分)是否與學生性別有關,采用分層抽樣的方法,從高二年級抽取了30名男生和20名女生的該學科成績,得到下圖所示女生成績的莖葉圖.其中抽取的男生中有21人的成績在80分以下,規(guī)定80分以上為優(yōu)秀(含80分).

(1)請根據(jù)題意,將2×2列聯(lián)表補充完整;

優(yōu)秀

非優(yōu)秀

總計

男生

女生

總計

50

(2)據(jù)此列聯(lián)表判斷,是否有90%的把握認為該學科成績與性別有關?

附: ,其中.

參考數(shù)據(jù)

≤2.706時,無充分證據(jù)判定變量A,B有關聯(lián),可以認為兩變量無關聯(lián);

>2.706時,有90%的把握判定變量A,B有關聯(lián);

>3.841時,有95%的把握判定變量A,B有關聯(lián);

>6.635時,有99%的把握判定變量A,B有關聯(lián).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax3-bx2+(2-b)x+1在x=x1處取得極大值,在x=x2處取得極小值,且0<x1<1<x2<2.

(1)證明:a>0;

(2)若z=a+2b,求z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在[-1,1]上的奇函數(shù)f(x),已知當x[-1,0]時,f(x)= (aR).

(1)寫出f(x)在[0,1]上的解析式;

(2)求f(x)在[0,1]上的最大值.

查看答案和解析>>

同步練習冊答案