【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+3|.
(1)解不等式f(x)≥6;
(2)記f(x)的最小值是m,正實(shí)數(shù)a,b滿足2ab+a+2b=m,求a+2b的最小值.
【答案】(1)(﹣∞,﹣2]∪[1,+∞).(2)
【解析】試題分析:(Ⅰ)利用零點(diǎn)分段討論法進(jìn)行求解;(Ⅱ)利用三角不等式求出函數(shù)的最值,再利用基本不等式進(jìn)行求解.
試題解析:(1)當(dāng)x≤時(shí),f(x)=﹣2﹣4x,
由f(x)≥6解得x≤﹣2,綜合得x≤﹣2,…
當(dāng)時(shí),f(x)=4,顯然f(x)≥6不成立,…
當(dāng)x≥時(shí),f(x)=4x+2,
由f(x)≥6,解得x≥1,綜合得x≥1,…
所以f(x)≥6的解集是(﹣∞,﹣2]∪[1,+∞).…
(2)f(x)=|2x﹣1|+|2x+3|≥|(2x﹣1)﹣(2x+3)|=4,
即f(x)的最小值m=4. …
∵a2b≤,…
由2ab+a+2b=4可得4﹣(a+2b)≤,
解得a+2b≥,
∴a+2b的最小值為.…
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年9月,國(guó)務(wù)院發(fā)布了《關(guān)于深化考試招生制度改革的實(shí)施意見(jiàn)》.某地作為高考改革試點(diǎn)地區(qū),從當(dāng)年秋季新入學(xué)的高一學(xué)生開(kāi)始實(shí)施,高考不再分文理科.每個(gè)考生,英語(yǔ)、語(yǔ)文、數(shù)學(xué)三科為必考科目,并從物理、化學(xué)、生物、政治、歷史、地理六個(gè)科目中任選三個(gè)科目參加高考.物理、化學(xué)、生物為自然科學(xué)科目,政治、歷史、地理為社會(huì)科學(xué)科目.假設(shè)某位考生選考這六個(gè)科目的可能性相等.
(1)求他所選考的三個(gè)科目中,至少有一個(gè)自然科學(xué)科目的概率;
(2)已知該考生選考的三個(gè)科目中有一個(gè)科目屬于社會(huì)科學(xué)科目,兩個(gè)科目屬于自然科學(xué)科目.若該考生所選的社會(huì)科學(xué)科目考試的成績(jī)獲等的概率都是0.8,所選的自然科學(xué)科目考試的成績(jī)獲等的概率都是0.75,且所選考的各個(gè)科目考試的成績(jī)相互獨(dú)立.用隨機(jī)變量表示他所選的三個(gè)科目中考試成績(jī)獲等的科目數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求以圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦為直徑的圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 (常數(shù)a,b>0,且a>b)的左、右焦點(diǎn)分別為F1,F2,M,N為短軸的兩個(gè)端點(diǎn),且四邊形F1MF2N是面積為4的正方形.
(1)求橢圓的方程;
(2)過(guò)原點(diǎn)且斜率分別為k和-k(k≥2)的兩條直線與橢圓的交點(diǎn)為A、B、C、D(按逆時(shí)針順序排列,且點(diǎn)A位于第一象限內(nèi)),求四邊形ABCD的面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)公差大于0的等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=15,且a1,a4,a13成等比數(shù)列,記數(shù)列 的前n項(xiàng)和為Tn.
(Ⅰ)求Tn;
(Ⅱ)若對(duì)于任意的n∈N*,tTn<an+11恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.
(1)求數(shù)列和的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間.
(2)當(dāng)且時(shí),不等式在上恒成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)隨機(jī)詢問(wèn)110名大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到列聯(lián)表:
男 | 女 | 總計(jì) | |
愛(ài)好 | 40 | 20 | 60 |
不愛(ài)好 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
由K2=,得K2=≈7.8.
附表:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是( )
A. 有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B. 有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某化工廠引進(jìn)一條先進(jìn)生產(chǎn)線生產(chǎn)某種化工產(chǎn)品,其生產(chǎn)的總成本(萬(wàn)元)與年產(chǎn)量(噸)之間的函數(shù)關(guān)系式可以近似的表示為,已知此生產(chǎn)線年產(chǎn)量最大為噸.
(1)求年產(chǎn)量為多少噸時(shí),生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;
(2)若每噸產(chǎn)品平均出廠價(jià)為40萬(wàn)元,那么當(dāng)年產(chǎn)量為多少噸時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com