【題目】如圖,四棱錐S- ABCD中,SD⊥底面ABCD,AB//DC,AD ⊥ DC,,AB=AD1DC=SD=2E為棱SB上的一點,且SE=2EB

(I)證明:DE⊥平面SBC;

(II)證明:求二面角A- DE -C的大小

【答案】)證明略;(Ⅱ)

【解析】

試題()先根據(jù)題意建立適當?shù)目臻g直角坐標系,寫出相關(guān)點的坐標,利用空間向量證明線線垂直,再利用線面垂直的判定定理進行證明;(Ⅱ)求出兩平面的法向量,求出法向量的夾角,再結(jié)合圖形確定二面角的大小.

試題解析:分別以,,所在直線為x軸,軸,z建立空間直角坐標系(如圖),

,

∵SE=2EB,

∴DE平面SBC

(Ⅱ) (Ⅰ)知,DE⊥平面SBC

平面SBC,

時,知,

中點,則

,由此得FA⊥DE

向量的夾角等于二面角的平面角

二面角的大小為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知是正項數(shù)列的前項和,.

1)證明:數(shù)列是等差數(shù)列;

2)設(shè),數(shù)列的前項和,

①求證:;

②解關(guān)于的不等式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),過點軸的垂線交函數(shù)圖象于點,以為切點作函數(shù)圖象的切線交軸于點,再過軸的垂線交函數(shù)圖象于點,以此類推得點,記的橫坐標為,

1)證明數(shù)列為等比數(shù)列并求出通項公式;

2)設(shè)直線與函數(shù)的圖象相交于點,記(其中為坐標原點),求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的四棱錐中,四邊形是等腰梯形,,平面,,.

1)求證:平面;

2)已知二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在所有棱長都相等的三棱柱中,.

1)證明:;

2)若二面角的大小為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓的參數(shù)方程為為參數(shù)),在以原點為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.

1)求圓的普通方程和直線的直角坐標方程;

2)設(shè)直線軸,軸分別交于兩點,點是圓上任一點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】知函數(shù).

1)討論函數(shù)的極值;

2)若函數(shù)上恰有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

1)求不等式的解集;

2)若關(guān)于的不等式在實數(shù)范圍內(nèi)解集為空集,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】每年10月中上旬是小麥的最佳種植時間,但小麥的發(fā)芽會受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關(guān)系,在不同的溫差下統(tǒng)計了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):

溫差

8

10

11

12

13

發(fā)芽數(shù)(顆)

79

81

85

86

90

(1)請根據(jù)統(tǒng)計的最后三組數(shù)據(jù),求出關(guān)于的線性回歸方程;

(2)若由(1)中的線性回歸方程得到的估計值與前兩組數(shù)據(jù)的實際值誤差均不超過兩顆,則認為線性回歸方程是可靠的,試判斷(1)中得到的線性回歸方程是否可靠;

(3)若100顆小麥種子的發(fā)芽率為顆,則記為的發(fā)芽率,當發(fā)芽率為時,平均每畝地的收益為元,某農(nóng)場有土地10萬畝,小麥種植期間晝夜溫差大約為,根據(jù)(1)中得到的線性回歸方程估計該農(nóng)場種植小麥所獲得的收益.

附:在線性回歸方程中,.

查看答案和解析>>

同步練習冊答案