已知矩陣M.

(1)求矩陣M的逆矩陣;

(2)求矩陣M的特征值及特征向量.

 

12

【解析】(1)設(shè)M1.

,

解得M1.

(2)矩陣A的特征多項(xiàng)式為f(x)(λ2)·(λ4)3

λ26λ5,令f(λ)0,

得矩陣M的特征值為15,當(dāng)λ1時(shí),由二元一次方程xy0,令x1,則y=-1,所以特征值λ1對應(yīng)的特征向量為α1;當(dāng)λ5時(shí),由二元一次方程3xy0,令x1,則y3,所以特征值λ5對應(yīng)的特征向量為α2

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用4練習(xí)卷(解析版) 題型:填空題

已知函數(shù)yf(x)(xR)的圖象如圖所示,則不等式xf′(x)<0的解集為________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用21練習(xí)卷(解析版) 題型:填空題

3個(gè)興趣小組,甲、乙兩位同學(xué)各自參加其中一個(gè)小組,每位同學(xué)參加各個(gè)小組的可能性相同,則這兩位同學(xué)參加同一個(gè)興趣小組的概率為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用1練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)loga(x1)(a>1),若函數(shù)yg(x)的圖象上任意一點(diǎn)P關(guān)于原點(diǎn)對稱的點(diǎn)Q的軌跡恰好是函數(shù)f(x)的圖象.

(1)寫出函數(shù)g(x)的解析式;

(2)當(dāng)x[0,1)時(shí)總有f(x)g(x)≥m成立,求m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用1練習(xí)卷(解析版) 題型:填空題

設(shè)函數(shù)f(x)f(a)f(1)2,則a等于________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用18練習(xí)卷(解析版) 題型:解答題

已知多項(xiàng)式f(n)n5n4n3n.

(1)f(1)f(2)的值;

(2)試探求對一切整數(shù)nf(n)是否一定是整數(shù)?并證明你的結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用17練習(xí)卷(解析版) 題型:解答題

某居民小區(qū)有兩個(gè)相互獨(dú)立的安全防范系統(tǒng)(簡稱系統(tǒng))AB,系統(tǒng)AB在任意時(shí)刻發(fā)生故障的概率分別為p.

(1)若在任意時(shí)刻至少有一個(gè)系統(tǒng)不發(fā)生故障的概率為,求p的值;

(2)設(shè)系統(tǒng)A3次相互獨(dú)立的檢測中不發(fā)生故障的次數(shù)為隨機(jī)變量ξ,求ξ的概率分布列及數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用14練習(xí)卷(解析版) 題型:解答題

已知a,bc均為正數(shù),證明:a2b2c22≥6,并確定a,b,c為何值時(shí),等號成立.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用10練習(xí)卷(解析版) 題型:填空題

觀察下列等式

121

1222=-3

1222326

12223242=-10

……

照此規(guī)律,第n個(gè)等式可為________

 

查看答案和解析>>

同步練習(xí)冊答案