【題目】設(shè)函數(shù)。
(1)求函數(shù)的單調(diào)減區(qū)間;
(2)若函數(shù)在區(qū)間上的極大值為8,求在區(qū)間上的最小值。
【答案】(1)減區(qū)間為(﹣1,2);(2)f(x)的最小值為-19。
【解析】
(1)先求出,由可得減區(qū)間;(2)根據(jù)極大值為8求得,然后再求出最小值.
(1)f′(x)=6x2-6x﹣12=6(x-2)(x+1),
令,得﹣1<x<2.
∴函數(shù)f(x)的減區(qū)間為(﹣1,2).
(2)由(1)知,f′(x)=6x2-6x﹣12=6(x+1)(x﹣2),
令f′(x)=0,得x=-1或x=2(舍).
當(dāng)x在閉區(qū)間[-2,3]變化時(shí),f′(x),f(x)變化情況如下表
x | (-2,-1) | -1 | (-1,2) | 2 | (2,3) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 單調(diào)遞增 | m+7 | 單調(diào)遞減 | m-20 | 單調(diào)遞增 |
∴當(dāng)x=-1時(shí),f(x)取極大值f(-1)=m+7,
由已知m+7=8,得m=1.
當(dāng)x=2時(shí)f(x)取極小值f(2)=m-20=-19
又f(-2)=-3,
所以f(x)的最小值為-19.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)解關(guān)于x的不等式x2-2mx+m+1>0;
(2)解關(guān)于x的不等式ax2-(2a+1)x+2<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.,e為自然對(duì)數(shù)的底數(shù).
(1)如果函數(shù)在(0, )上單調(diào)遞增,求m的取值范圍;
(2)設(shè),,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是y=f(x)導(dǎo)函數(shù)的圖象,對(duì)于下列四個(gè)判斷:
①f(x)在[-2,-1]上是增函數(shù);
②x=-1是f(x)的極小值點(diǎn);
③f(x)在[-1,2]上是增函數(shù),在[2,4]上是減函數(shù);
④x=3是f(x)的極小值點(diǎn).
其中判斷正確的是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是某學(xué)生在4月份開始進(jìn)人沖刺復(fù)習(xí)至高考前的5次大型聯(lián)考數(shù)學(xué)成績(分);
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)①請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
②若在4月份開始進(jìn)入沖刺復(fù)習(xí)前,該生的數(shù)學(xué)分?jǐn)?shù)最好為116分,并以此作為初始分?jǐn)?shù),利用上述回歸方程預(yù)測(cè)高考的數(shù)學(xué)成績,并以預(yù)測(cè)高考成績作為最終成績,求該生4月份后復(fù)習(xí)提高率.(復(fù)習(xí)提高率=,分?jǐn)?shù)取整數(shù))
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是矩形,沿對(duì)角線將折起,使得點(diǎn)在平面上的射影恰好落在邊上.
(1)求證:平面平面;
(2)當(dāng)時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某港口的水深(米)是時(shí)間(,單位:小時(shí))的函數(shù),下面是每天時(shí)間與水深的關(guān)系表:
經(jīng)過長期觀測(cè),可近似的看成是函數(shù)
(1)根據(jù)以上數(shù)據(jù),求出的解析式;
(2)若船舶航行時(shí),水深至少要米才是安全的,那么船舶在一天中的哪幾段時(shí)間可以安全的進(jìn)出該港?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),當(dāng)時(shí),的極大值為;當(dāng)時(shí),有極小值。求:
(1)的值;
(2)函數(shù)的極小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年的流感來得要比往年更猛烈一些據(jù)四川電視臺(tái)“新聞現(xiàn)場(chǎng)”播報(bào),近日四川省人民醫(yī)院一天的最高接診量超過了一萬四千人,成都市婦女兒童中心醫(yī)院接診量每天都在九千人次以上這些浩浩蕩蕩的看病大軍中,有不少人都是因?yàn)楦忻皝淼尼t(yī)院某課外興趣小組趁著寒假假期空閑,欲研究晝夜溫差大小與患感冒人數(shù)之間的關(guān)系,他們分別到成都市氣象局與跳傘塔社區(qū)醫(yī)院抄錄了去年1到6月每月20日的晝夜溫差情況與患感冒就診的人數(shù),得到如下資料:
日期 | 1月20日 | 2月20日 | 3月20日 | 4月20日 | 5月20日 | 6月20日 |
晝夜溫差 | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)人 | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2月至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考公式: ,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com