數(shù)列{an}滿足a1=1,an+1=(n2+n-λ)an(n=1,2,…),λ是常數(shù).
(1)當(dāng)a2=-1時(shí),求λ及a3的值.
(2)數(shù)列{an}是否可能為等差數(shù)列?若可能,求出它的通項(xiàng)公式;若不可能,說(shuō)明理由.
(1) λ=3   a3=-3.     (2) 不可能,理由見(jiàn)解析
(1)由于an+1=(n2+n-λ)an(n=1,2,…),
且a1=1,所以當(dāng)a2=-1時(shí),得-1=2-λ,
故λ=3.從而a3=(22+2-3)×(-1)=-3.
(2)數(shù)列{an}不可能為等差數(shù)列,理由如下:
由a1=1,an+1=(n2+n-λ)an,得
a2=2-λ,a3=(6-λ)(2-λ),
a4=(12-λ)(6-λ)(2-λ).
若存在λ,使{an}為等差數(shù)列,則a3-a2=a2-a1,
即(5-λ)(2-λ)=1-λ,解得λ=3.
于是a2-a1=1-λ=-2,
a4-a3=(11-λ)(6-λ)(2-λ)=-24.
這與{an}為等差數(shù)列矛盾.
所以,對(duì)任意λ,{an}都不可能是等差數(shù)列.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知正數(shù)數(shù)列中,,前項(xiàng)和為,對(duì)任意,、、成等差數(shù)列.
(1)求;
(2)設(shè),數(shù)列的前項(xiàng)和為,當(dāng)時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知在平面直角坐標(biāo)系中有一個(gè)點(diǎn)列:,……,.若點(diǎn)到點(diǎn)的變化關(guān)系為:,則等于      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

從盛滿2升純酒精的容器里倒出1升純酒精,然后填滿水,再倒出1升混合溶液后又用水填滿,以此繼續(xù)下去,則至少應(yīng)倒   次后才能使純酒精體積與總?cè)芤旱捏w積之比低于10%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列{an}的公差d≠0,且a1,a3,a9成等比數(shù)列,則=(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}中,a1=1,前n項(xiàng)和為Sn且Sn+1=Sn+1,n∈N*.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)求數(shù)列{}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知兩個(gè)等差數(shù)列{an}和{bn}的前n項(xiàng)和分別為An和Bn,且=,則使得為整數(shù)的正整數(shù)n的個(gè)數(shù)是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列{an}中,|a3|=|a9|,公差d<0,Sn是數(shù)列{an}的前n項(xiàng)和,則(  )
A.S5>S6B.S5<S6
C.S6=0D.S5=S6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列{an}中,an=-2n2+29n+3,則此數(shù)列最大項(xiàng)的值是(  )
A.103B.108C.103D.108

查看答案和解析>>

同步練習(xí)冊(cè)答案