已知全集U={1,2,4,6,8,12},集合A={8,x,y,z},集合B={1,xy,yz,2x},且z≠6、12,若A=B,A?U,B?U,求A的補(bǔ)集.
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:根據(jù)題意得到2x必定為偶數(shù),且x,y,z中必有1,再由z≠6、12,且A=B,A?U,B?U,求出x,y,z的值確定出A,即可求出A的補(bǔ)集.
解答: 解:根據(jù)題意得:2x必定為偶數(shù);x,y,z中必有1,
∵z≠6、12,且A=B,A?U,B?U,
∴x=1,yz=8,z=2,y=4,
∴A={8,1,4,2},
∵全集U={1,2,4,6,8,12},
∴∁UA={6,12}.
點(diǎn)評(píng):此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+x-6=0},函數(shù)f(x)=2x-log2x
(1)求f[f(1)]的值;
(2)若f(x)=m的解集為B,且A∩B≠ϕ,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)1≤x≤2時(shí),求函數(shù)y=-x2-x+1值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x•lnx,g(x)=
lnx
x

(Ⅰ)求函數(shù)f(x)的極值和單調(diào)區(qū)間:
(Ⅱ)對(duì)于x>0的任意實(shí)數(shù),不等式g(x)≤ax-1≤f(x)恒成立,求實(shí)數(shù)a的取值;
(Ⅲ)數(shù)列{1nn}(n∈N*)的前n項(xiàng)和為Sn,求證:
(n-1)2
2n
≤Sn
n(n-1)(n+1)
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公路段在某一時(shí)刻內(nèi)監(jiān)測(cè)到的車速頻率分布直方圖如圖所示.
(Ⅰ)求縱坐標(biāo)中參數(shù)h的值及第三個(gè)小長方形的面積;
(Ⅱ)求車速的眾數(shù)v1,中位數(shù)v2的估計(jì)值;
(Ⅲ)求平均車速
.
v
的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(
1-x
1+x
)=
1-x2
1+x2
,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在海岸線l一側(cè)C處有一個(gè)美麗的小島,某旅游公司為方便游客,在l上設(shè)立了A,B兩個(gè)報(bào)名點(diǎn),滿足A,B,C中任意兩點(diǎn)間的距離為10千米.公司擬按以下思路運(yùn)作:先將A,B兩處游客分別乘車集中到AB之間的中轉(zhuǎn)點(diǎn)D處(點(diǎn)D異于A,B兩點(diǎn)),然后乘同一艘游輪前往C島.據(jù)統(tǒng)計(jì),每批游客A處需發(fā)車2輛,B處需發(fā)車4輛,每輛汽車每千米耗費(fèi)4元,游輪每千米耗費(fèi)24元.設(shè)∠CDA=α,每批游客從各自報(bào)名點(diǎn)到C島所需運(yùn)輸成本S元.
(1)寫出S關(guān)于α的函數(shù)表達(dá)式,并指出α的取值范圍;
(2)問中轉(zhuǎn)點(diǎn)D距離A處多遠(yuǎn)時(shí),S最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試證:對(duì)任意的正整數(shù)n,有
1
1×2×3
+
1
2×3×4
+…+
1
n(n+1)(n+2)
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)A、B對(duì)應(yīng)的復(fù)數(shù)分別是4+i和-2+3i,則線段AB的中點(diǎn)對(duì)應(yīng)的復(fù)數(shù)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案