【題目】已知函數(shù),.
(1)若曲線與在點(diǎn)處有相同的切線,求函數(shù)的極值;
(2)若,討論函數(shù)的單調(diào)性.
【答案】(1)的極大值,極小值為;(2)時(shí),的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;時(shí),的單調(diào)增區(qū)間為,,單調(diào)減區(qū)間為;時(shí),的單調(diào)增區(qū)間為,沒有減區(qū)間;時(shí),的單調(diào)增區(qū)間為,,單調(diào)減區(qū)間為.
【解析】
(1)對(duì)函數(shù),分別求導(dǎo),根據(jù)曲線與在點(diǎn)處有相同的切線,可知,解得,從而得到,求,判斷導(dǎo)數(shù)的正負(fù),求極值,即可.
(2)先求的定義域,求導(dǎo)數(shù),對(duì)進(jìn)行分類討論,求解即可.
(1),
,,
由題意知,∴,
∴
∴,
∴
∴或時(shí),,時(shí),,
∴在上是增函數(shù),在上是減函數(shù),在上是增函數(shù),
∴的極大值,極小值為.
(2)的定義域?yàn)?/span>,
,
當(dāng)時(shí),∵,∴.
∴時(shí),,時(shí),,
當(dāng)時(shí),的解集為,解集為,
當(dāng)時(shí),,當(dāng)時(shí)取等號(hào),
當(dāng)時(shí),解集為,解集為,
∴時(shí),的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,
時(shí),的單調(diào)增區(qū)間為,,單調(diào)減區(qū)間為,
時(shí),的單調(diào)增區(qū)間為,沒有減區(qū)間,
時(shí),的單調(diào)增區(qū)間為,,單調(diào)減區(qū)間為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種產(chǎn)品,每年投入固定成本0.5萬元,此外每生產(chǎn)100件這種產(chǎn)品還需要增加投資0.25萬元,經(jīng)預(yù)測(cè)可知,市場(chǎng)對(duì)這種產(chǎn)品的年需求量為500件,當(dāng)出售的這種產(chǎn)品的數(shù)量為t(單位:百件)時(shí),銷售所得的收入約為(萬元).
(1)若該公司的年產(chǎn)量為x(單位:百件),試把該公司生產(chǎn)并銷售這種產(chǎn)品所得的年利潤(rùn)表示為年產(chǎn)量x的函數(shù);
(2)當(dāng)這種產(chǎn)品的年產(chǎn)量為多少時(shí),當(dāng)年所得利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的有( )
A.設(shè)正六棱錐的底面邊長(zhǎng)為1,側(cè)棱長(zhǎng)為,那么它的體積為
B.用斜二測(cè)法作△ABC的水平放置直觀圖得到邊長(zhǎng)為a的正三角形,則△ABC面積為
C.三個(gè)平面可以將空間分成4,6,7或者8個(gè)部分
D.已知四點(diǎn)不共面,則其中任意三點(diǎn)不共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知斜率為的直線與橢圓交于,兩點(diǎn),線段的中點(diǎn)為.
(1)證明:;
(2)設(shè)為的右焦點(diǎn),為上一點(diǎn),且.證明:,,成等差數(shù)列,并求該數(shù)列的公差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足.
(1)若,證明:
(i)當(dāng)時(shí),有;
(ii)當(dāng)時(shí),有.
(2)若,證明:當(dāng)時(shí),有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x),函數(shù)g(θ)=cos2θ+2sinθ,θ∈[m,].m,b∈R.
(1)求b的值;
(2)判斷函數(shù)f(x)在[0,1]上的單調(diào)性,并證明;
(3)當(dāng)x∈[0,1]時(shí),函數(shù)g(θ)的最小值恰為f(x)的最大值,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將各位數(shù)碼不大于3的全體正整數(shù)m按自小到大的順序排成一個(gè)數(shù)列,則__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某藝術(shù)品公司欲生產(chǎn)一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內(nèi)接圓錐組成,圓錐的側(cè)面用于藝術(shù)裝飾,如圖1.為了便于設(shè)計(jì),可將該禮品看成是由圓O及其內(nèi)接等腰三角形繞底邊上的高所在直線旋轉(zhuǎn)而成,如圖2.已知圓O的半徑為,設(shè),,圓錐的側(cè)面積為(S圓錐的側(cè)面積(R-底面圓半徑,I-母線長(zhǎng)))
(1)求S關(guān)于的函數(shù)關(guān)系式;
(2)為了達(dá)到最佳觀賞效果,要求圓錐的側(cè)面積S最大.求S取得最大值時(shí)腰的長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代的數(shù)學(xué)名著,書中有如下問題:“今有五人分五錢,令上兩人所得與下三人等。問各得幾何?”其意思是:“已知甲、乙、丙、丁、戊五人分五錢,甲、乙兩人所得之和與丙、丁、戊三人所得之和相等,且甲、乙、丙、丁、戊所得依次成等差數(shù)列。問五人各得多少錢?”(“錢”是古代的一種重量單位)。這個(gè)問題中,戊所得為( )
A. 錢 B. 錢 C. 錢 D. 錢
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com