【題目】已知等比數(shù)列是遞增數(shù)列,其前項(xiàng)和為,且.
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè),求數(shù)列的前 項(xiàng)和.
【答案】(1) ;(2) .
【解析】試題分析:(1) 設(shè)的公比為,利用基本量計(jì)算出, ,即可得出數(shù)列的通項(xiàng)公式;(2) ,利用錯(cuò)位相減法求出數(shù)列的前n項(xiàng)和.
試題解析:
(I)設(shè)的公比為 ,
由已知得
解得
又因?yàn)閿?shù)列為遞增數(shù)列
所以,
∴ .
(II)
.
點(diǎn)睛: 用錯(cuò)位相減法求和應(yīng)注意的問題:(1)要善于識(shí)別題目類型,特別是等比數(shù)列公比為負(fù)數(shù)的情形;(2)在寫出“Sn”與“qSn”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對齊”以便下一步準(zhǔn)確寫出“Sn-qSn”的表達(dá)式;(3)在應(yīng)用錯(cuò)位相減法求和時(shí),若等比數(shù)列的公比為參數(shù),應(yīng)分公比等于1和不等于1兩種情況求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, , 為中點(diǎn), 于(不同于點(diǎn)),延長交于,將沿折起,得到三棱錐,如圖所示.
(Ⅰ)若是的中點(diǎn),求證:直線平面.
(Ⅱ)求證: .
(Ⅲ)若平面平面,試判斷直線與直線能否垂直?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了節(jié)約水資源,某市準(zhǔn)備按照居民家庭年用水量實(shí)行階梯水價(jià).水價(jià)分檔遞增,計(jì)劃使第一檔、第二檔和第三檔的水價(jià)分別覆蓋全市居民家庭的80%,15%和5%,為合理確定各檔之間的界限,隨機(jī)抽查了該市5萬戶居民家庭上一年的年用水量(單位:m3),繪制了統(tǒng)計(jì)圖.如圖所示,下面四個(gè)推斷( 。
①年用水量不超過180m3的該市居民家庭按第一檔水價(jià)交費(fèi);
②年用水量超過240m3的該市居民家庭按第三檔水價(jià)交費(fèi);
③該市居民家庭年用水量的中位數(shù)在150﹣180之間;
④該市居民家庭年用水量的平均數(shù)不超過180.
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓:的離心率為,直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過原點(diǎn)的直線與橢圓交于,兩點(diǎn)(,不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且.直線與軸、軸分別交于,兩點(diǎn).設(shè)直線,的斜率分別為,,證明存在常數(shù)使得,并求出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位,已知直線的參數(shù)方程為,( 為參數(shù), ),曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線相交于, 兩點(diǎn),當(dāng)變化時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知R,命題:對任意,不等式恒成立;命題:存在,使得成立.
(1)若為真命題,求的取值范圍;
(2)若且為假, 或為真,求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中,
(1)如圖1,P,Q是BC邊上的兩點(diǎn),AP=AQ,∠BAP=20°,求∠AQB的度數(shù);
(2)點(diǎn)P,Q是BC邊上的兩個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)P在點(diǎn)Q的左側(cè),且AP=AQ,點(diǎn)Q關(guān)于直線AC的對稱點(diǎn)為M,連接AM,PM.
①依題意將圖2補(bǔ)全;
②小茹通過觀察、實(shí)驗(yàn)提出猜想:在點(diǎn)P,Q運(yùn)動(dòng)的過程中,始終有PA=PM,小茹把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:要證明PA=PM,只需證△APM是等邊三角形;
想法2:在BA上取一點(diǎn)N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;
想法3:將線段BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…
請你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)a1=a,其前n項(xiàng)和為Sn , 且滿足Sn+Sn﹣1=3n2+2n+4(n≥2),若對任意的n∈N* , an<an+1恒成立,則a的取值范圍是( )
A.( , )
B.( , )
C.( , )
D.(﹣∞, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓,經(jīng)過原點(diǎn)的兩直線滿足,且交圓于不同兩點(diǎn)交, 圓于不同兩點(diǎn),記的斜率為
(1)求的取值范圍;
(2)若四邊形為梯形,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com