甲、乙兩人從4門課程中各選修2門,則甲、乙所選的課程中至少有1門不相同的選法共有 .
30
解析試題分析:解:甲、乙所選的課程中至少有1門不相同的選法可以分為兩類:,1、甲、乙所選的課程中2門均不相同,甲先從4門中任選2門,乙選取剩下的2門,有 =6種.,2、甲.乙所選的課程中有且只有1門相同,分為2步:①從4門中先任選一門作為相同的課程,有=4種選法;②甲從剩余的3門中任選1門乙從最后剩余的2門中任選1門有C31C21=6種選法,由分步計(jì)數(shù)原理此時(shí)共有=24種.綜上,由分類計(jì)數(shù)原理,甲、所選的課程中至少有1門不相同的選法共有6+24=30種.故填寫30.
考點(diǎn):分類計(jì)數(shù)原理
點(diǎn)評(píng):本題考查排列組合知識(shí),合理分類、正確分步是解題的關(guān)鍵
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
將甲、乙、丙3名志愿者安排在周一至周五的5天中參加某項(xiàng)志愿者活動(dòng),要求每人參加一天且每天至多安排一人,并要求甲安排在乙、丙的前面,則不同的安排方法共有 種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
將7個(gè)不同的小球全部放入編號(hào)為2 和3 的兩個(gè)小盒子里,使得每個(gè)盒子里的球的個(gè)數(shù)不小于盒子的編號(hào),則不同的放球方法共有____________ 種(用數(shù)字作答) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
現(xiàn)有5種不同顏色的染料,要對(duì)如圖中的四個(gè)不同區(qū)域進(jìn)行著色,要求有公共邊的兩塊區(qū)域不能使用同一種顏色,則不同的著色方法的種數(shù)是 種.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com