動圓x2+y2-(4m+2)x-2my+4m2+4m+1=0的圓心的軌跡方程是 ________.

x-2y-1=0(x≠1)
分析:把圓化為標(biāo)準(zhǔn)方程后得到:圓心為(2m+1,m),r=|m|,(m≠0),令x=2m+1,y=m,消去m即可得到y(tǒng)與x的解析式.
解答:把圓的方程化為標(biāo)準(zhǔn)方程得[x-(2m+1)]2+(y-m)2=m2(m≠0)
則圓心坐標(biāo)為,因為m≠0,得到x≠1,所以消去m可得x=2y+1即x-2y-1=0
故答案為:x-2y-1=0(x≠1)
點評:此題考查學(xué)生會將圓的方程變?yōu)闃?biāo)準(zhǔn)方程,會把直線的參數(shù)方程化為一般方程.做題時注意m的范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4 參數(shù)方程與極坐標(biāo)
在平面直角坐標(biāo)系xOy中,動圓x2+y2-8xcosθ-6ysinθ+7cos2θ+8=0(θ∈R)的圓心為P(x0,y0),求2x0-y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知矩陣M=
2a
21
,其中a∈R,若點P(1,-2)在矩陣M的變換下得到點P'(-4,0)
(i)求實數(shù)a的值;
(ii)求矩陣M的特征值及其對應(yīng)的特征向量.
(2)在平面直角坐標(biāo)系xOy中,動圓x2+y2-8xcosθ-6ysinθ+7cos2θ+8=0(a∈R)的圓心為P(x0,y0),求2x0-y0的取值范圍.
(3)已知a,b,c為實數(shù),且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
①求證:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14
;
②求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下五個命題中:
①若兩直線平行,則兩直線斜率相等;
②設(shè)F1、F2為兩個定點,a為正常數(shù),且||PF1|-|PF2||=2a,則動點P的軌跡為雙曲線;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④對任意實數(shù)k,直線l:kx-y+1-k=0與圓x2+y2-2y-4=0的位置關(guān)系是相交;
⑤P為橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點,F(xiàn)為它的一個焦點,則以PF為直徑的圓與以長軸為直徑的圓相切.
其中真命題的序號為
③④⑤
③④⑤
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

選修4-4 參數(shù)方程與極坐標(biāo)
在平面直角坐標(biāo)系xOy中,動圓x2+y2-8xcosθ-6ysinθ+7cos2θ+8=0(θ∈R)的圓心為P(x0,y0),求2x0-y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省蘇州市張家港外國語學(xué)校高二(上)周日數(shù)學(xué)試卷11(理科)(解析版) 題型:解答題

選修4-4 參數(shù)方程與極坐標(biāo)
在平面直角坐標(biāo)系xOy中,動圓x2+y2-8xcosθ-6ysinθ+7cos2θ+8=0(θ∈R)的圓心為P(x,y),求2x-y的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案