6、給出如下四個命題:
①對于任意一條直線a,平面α內(nèi)必有無數(shù)條直線與a垂直;
②若α、β是兩個不重合的平面,l、m是兩條不重合的直線,則α∥β的一個充分而不必要條件是l⊥α,m⊥β,且l∥m;
③已知a、b、c、d是四條不重合的直線,如果a⊥c,a⊥d,b⊥c,b⊥d,則“a∥b”與“c∥d”不可能都不成立;
④已知命題P:若四點不共面,那么這四點中任何三點都不共線.
則命題P的逆否命題是假命題上命題中,正確命題的個數(shù)是( 。
分析:用線面位置關系的定義判斷,結合線面垂直的定義和線線的位置關系判斷,用反證法判斷④推出矛盾.
解答:解:①對,當a?α或a∥α時,α內(nèi)必有無數(shù)條直線與a垂直;
當a∩α=A時,若a⊥α時滿足題意;
當a與α斜交時,a在α內(nèi)的射影與α內(nèi)的直線垂直,則a與該直線垂直,
α內(nèi)必有無數(shù)條直線與a垂直;
②對,充分性成立,∵l⊥α,l∥m,∴m⊥α,又∵m⊥β,∴α∥β,
必要性不成立,α∥β,推不出l和m關系;
③對,c∥d時,滿足條件;c與d相交時確定一個平面α,則a⊥α,b⊥α,故有a∥b;
當c與d異面時,可c過上一點作出e與d平行,則c、e確定平面β,a⊥β,b⊥β,有a∥b;
④對,用反證法證明,得出與條件矛盾;
故選D.
點評:本題考查了線面位置關系的定義,用反證法證明推出矛盾,考查了推理論證能力、空間想象能力和邏輯思維能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出如下四個命題
①對于任意的實數(shù)α和β,等式cos(α+β)=cosαcosβ-sinαsinβ恒成立;
②存在實數(shù)α,β,使等式cos(α+β)=cosαcosβ+sinαsinβ能成立;
③公式tan(α+β)=
tanα+tanβ
1-tanα•tanβ
成立的條件是α≠kπ+
π
2
(k∈Z)且β≠kπ+
π
2
(k∈Z);
④不存在無窮多個α和β,使sin(α-β)=sinαcosβ-cosαsinβ;
其中假命題是( 。
A、①②B、②③C、③④D、②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x|x|+bx+c(b,c∈R),給出如下四個命題:①若c=0,則f(x)為奇函數(shù);②若b=0,則函數(shù)f(x)在R上是增函數(shù);③函數(shù)y=f(x)的圖象關于點(0,c)成中心對稱圖形;④關于x的方程f(x)=0最多有兩個實根.其中正確的命題
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)給出如下四個命題:
①過點A(4,1)且在兩坐標軸上的截距相等的直線共有兩條;
②若平面α內(nèi)的兩條直線都與平面β平行,則α∥β;
③已知α∩β=l,若α內(nèi)的直線m垂直于l,則α⊥β;
④已知α⊥β,α∩β=l,若α內(nèi)的直線m與l不垂直,則m與β也不垂直.
請你寫出其中所有真命題的序號:
①④
①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•閘北區(qū)一模)在實數(shù)集R中,我們定義的大小關系“>”為全體實數(shù)排了一個“序”.類似的,我們在復數(shù)集C上也可以定義一個稱為“序”的關系,記為“>”.定義如下:對于任意兩個復數(shù)z1=a1+b1i,z2=a2+b2i(a1,a2,b1,b2∈R),z1>z2當且僅當“a1>a2”或“a1=a2且b1>b2”.
按上述定義的關系“>”,給出如下四個命題:
①1>i>0; 
②若z1>z2,z2>z3,則z1>z3;
③若z1>z2,則,對于任意z∈C,z1+z>z2+z;
④對于復數(shù)z>0,若z1>z2,則zz1>zz2
其中真命題的序號為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出如下四個命題:
①若a≥0,b≥0,則
2(a2+b2)
≥a+b
;
②若ab>0,則|a+b|<|a|+|b|;
③若a>0,b>0,a+b>4,ab>4,則a>2,b>2;
④若a,b,c,∈R,且ab+bc+ca=1,則(a+b+c)2≥3;
其中正確的命題是(  )

查看答案和解析>>

同步練習冊答案