在各項(xiàng)不為零的等差數(shù)列{an}中,若數(shù)學(xué)公式=________.

-2
分析:利用等差數(shù)列的性質(zhì)an+1+an-1=2an(n≥2)結(jié)合題意可求得an,再利用等差數(shù)列前n項(xiàng)和的性質(zhì)求得S2n-1即可得答案.
解答:∵{an}為各項(xiàng)不為零的等差數(shù)列,
∴an+1+an-1=2an(n≥2),又an+1-+an-1=0(n≥2),
=an+1+an-1=2an(n≥2),an≠0,
∴an=2.
由等差數(shù)列的性質(zhì)得,an是a1與a2n-1(n≥2)的等差中項(xiàng),
∴S2n-1==(2n-1)•an=4n-2.
∴S2n-1-4n=-2.
故答案為:-2.
點(diǎn)評(píng):本題考查等差中項(xiàng)的性質(zhì)及等差數(shù)列前n項(xiàng)和的性質(zhì),掌握等差數(shù)列的性質(zhì)是基礎(chǔ),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

171、在各項(xiàng)均不為零的等差數(shù)列{an}中,若an+1-an2+an-1=0(n≥2,n∈N*),則S2n-1-4n=
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5、在各項(xiàng)均不為零的等差數(shù)列{an}中,若an+1-an2+an-1=0(n≥2),則S2n-1-4n=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在各項(xiàng)不為零的等差數(shù)列{an}中,若an+1-
a
2
n
+an-1=0(n≥2),則S2n-1-4n
=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在各項(xiàng)均不為零的等差數(shù)列{an}中,sn為其前n項(xiàng)和,若
a
2
n
-an-1-an+1=0
,(n≥2,n∈N*),則s2010等于( 。

查看答案和解析>>

同步練習(xí)冊答案