【題目】已知數(shù)列滿足,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為,求證:當(dāng)時(shí),.
【答案】(1)(2)證明見解析
【解析】
(1)法一:計(jì)算出數(shù)列前4項(xiàng),猜想:,用數(shù)學(xué)歸納法證明即可;法二:所給等式化簡(jiǎn)為 所以是等差數(shù)列,首項(xiàng)為2,公差為1,求出通項(xiàng)公式即可得解;(2) 先證明時(shí),,
,再證明,即可得證.
解:(1)法一:,且
,
同樣可求得,
猜想:,
以下用數(shù)學(xué)歸納法證明
①當(dāng)時(shí),,符合,
②假設(shè)時(shí),,
則時(shí),,即,
符合,
綜上:.
法二:由得
,,
即,
是等差數(shù)列,首項(xiàng)為2,公差為1,
則.
(2)當(dāng)時(shí),,
法一:先證明時(shí),,
令,則,
為減函數(shù),
則時(shí),.
時(shí),
,
又即
,
時(shí),,
當(dāng)時(shí),.
法二:
,
要證明,
即證,
設(shè),
則,
由得:
當(dāng)時(shí),,
,
,
,
當(dāng)時(shí),.
法三:由法二知即證,
設(shè)
當(dāng)時(shí),成立,
當(dāng)時(shí),
,
當(dāng)時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若同時(shí)滿足以下條件:
①在D上單調(diào)遞減或單調(diào)遞增;
②存在區(qū)間,使在 上的值域是,那么稱為閉函數(shù).
(1)求閉函數(shù)符合條件②的區(qū)間 ;
(2)判斷函數(shù)是不是閉函數(shù)?若是請(qǐng)找出區(qū)間;若不是請(qǐng)說明理由;
(3)若是閉函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】王老師是高三的班主任,為了在寒假更好的督促班上的學(xué)生完成學(xué)習(xí)作業(yè),王老師特地組建了一個(gè)QQ群,群的成員由學(xué)生、家長(zhǎng)、老師共同組成.已知該QQ群中男學(xué)生人數(shù)多于女學(xué)生人數(shù),女學(xué)生人數(shù)多于家長(zhǎng)人數(shù),家長(zhǎng)人數(shù)多于教師人數(shù),教師人數(shù)的兩倍多于男學(xué)生人數(shù).則該QQ群人數(shù)的最小值為( )
A.20B.22C.26D.28
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),其中是自然對(duì)數(shù)的底數(shù),判斷有無(wú)極值,有極值時(shí)求出極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)半徑為1千米的扇形景點(diǎn)的平面示意圖,.原有觀光道路OC,且.為便于游客觀賞,景點(diǎn)管理部門決定新建兩條道路PQ、PA,其中P在原道路OC(不含端點(diǎn)O、C)上,Q在景點(diǎn)邊界OB上,且,同時(shí)維修原道路的OP段,因地形原因,新建PQ段、PA段的每千米費(fèi)用分別是萬(wàn)元、萬(wàn)元,維修OP段的每千米費(fèi)用是萬(wàn)元.
(1)設(shè),求所需總費(fèi)用,并給出的取值范圍;
(2)當(dāng)P距離O處多遠(yuǎn)時(shí),總費(fèi)用最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,為其前項(xiàng)的和,滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,求證:當(dāng),時(shí);
(3)已知當(dāng),且時(shí)有,其中,求滿足的所有的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn),與短軸的一個(gè)端點(diǎn)構(gòu)成一個(gè)等邊三角形,且直線與圓相切.
(1)求橢圓的方程;
(2)已知過橢圓的左頂點(diǎn)的兩條直線,分別交橢圓于,兩點(diǎn),且,求證:直線過定點(diǎn),并求出定點(diǎn)坐標(biāo);
(3)在(2)的條件下求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某健身館在2019年7、8兩月推出優(yōu)惠項(xiàng)目吸引了一批客戶.為預(yù)估2020年7、8兩月客戶投入的健身消費(fèi)金額,健身館隨機(jī)抽樣統(tǒng)計(jì)了2019年7、8兩月100名客戶的消費(fèi)金額,分組如下:,,,…,(單位:元),得到如圖所示的頻率分布直方圖:
(1)請(qǐng)用抽樣的數(shù)據(jù)預(yù)估2020年7、8兩月健身客戶人均消費(fèi)的金額(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若把2019年7、8兩月健身消費(fèi)金額不低于800元的客戶,稱為“健身達(dá)人”,經(jīng)數(shù)據(jù)處理,現(xiàn)在列聯(lián)表中得到一定的相關(guān)數(shù)據(jù),請(qǐng)補(bǔ)全空格處的數(shù)據(jù),并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“健身達(dá)人”與性別有關(guān)?
健身達(dá)人 | 非健身達(dá)人 | 總計(jì) | |
男 | 10 | ||
女 | 30 | ||
總計(jì) |
(3)為吸引顧客,在健身項(xiàng)目之外,該健身館特別推出健身配套營(yíng)養(yǎng)品的銷售,現(xiàn)有兩種促銷方案.
方案一:每滿800元可立減100元;
方案二:金額超過800元可抽獎(jiǎng)三次,每次中獎(jiǎng)的概率為,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)1次打9折,中獎(jiǎng)2次打8折,中獎(jiǎng)3次打7折.
若某人打算購(gòu)買1000元的營(yíng)養(yǎng)品,請(qǐng)從實(shí)際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.
附:
0.100 | 0.050 | 0.010 | 0.005 | ||
2.072 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=xv(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com