(文)對正整數(shù)n,設曲線y=xn(1-x)在x=2處的切線與y軸交點的縱坐標為an,則數(shù)列{}的前n項和是________.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知:正數(shù)數(shù)列{an}的通項公式an=
3n+2
3n-1
(n∈N*
(1)求數(shù)列{an}的最大項;
(2)設bn=
an+p
an-2
,確定實常數(shù)p,使得{bn}為等比數(shù)列;
(3)(理)數(shù)列{Cn},滿足C1>-1,C1
2
,Cn+1=
Cn+p
Cn+1
,其中p為第(2)小題中確定的正常數(shù),求證:對任意n∈N*,有C2n-1
2
且C2n
2
或C2n-1
2
且C2n
2
成立.
(文)設{bn}是滿足第(2)小題的等比數(shù)列,求使不等式-b1+b2-b3+…+(-1)nbn≥2010成立的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設不等式組
x>0
y>0
y≤-nx+3n
所表示的平面區(qū)域為Dn,記Dn內(nèi)的整點個數(shù)為an(n∈N*)(整點即橫坐標與縱坐標均為整數(shù)的點).
(1)求數(shù)列{an}的通項公式;
(2)(理)設Sn=
1
an+1
+
1
an+2
+…+
1
a2n
,求Sn的最小值(n>1,n∈N*);
(3)設Tk=
1
a1
+
1
a2
+…+
1
ak
求證:T2n
7n+11
36
(n>1,n∈N*)

(文)記數(shù)列{an}的前n項和為Sn,且Tn=
Sn
3•2n-1
.若對一切的正整數(shù)n,總有Tn≤m,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年大連市雙基測試文)(14分)已知等差數(shù)列{an}滿足,設Sn是數(shù)列的前n項和,

   (1)求

   (2) 比較 其中的大。   

   (3)如果函數(shù)對一切大于1的正整數(shù)n其函數(shù)值都小于零,那么a、b應滿足什么條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文)數(shù)列{an}中a1=0,,(1)求證數(shù)列為等差數(shù)列,并求出公差;(2)設數(shù)列{an}的前n項和為Sn,證明Sn<n-ln(n+1);(3)設,證明:對任意正整數(shù)n,m,都有.

查看答案和解析>>

同步練習冊答案